×

zbMATH — the first resource for mathematics

Subreflexive normed linear space. (English) Zbl 0081.32701
Arch. Math. 8, 444-450 (1958); Correction. Ibid. 9, 439-440 (1958).

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. M. Day, Normed linear spaces. Springer Berlin, to appear in 1958. · Zbl 0082.10603
[2] M. M. Day, Strict convexity and smoothness of normed spaces. Trans. Amer. math. Soc.78, 516–528 (1955). · Zbl 0068.09101
[3] P. R.Halmos, Measure Theory. New York 1950.
[4] R. C. James, Reflexivity and the supremum of linear functionals. Ann. of Math.66, 159–169 (1957). · Zbl 0079.12704
[5] R. C. James, A non-reflexive Banach space isometric with its second conjugate space. Proc. nat. Acad. Sci. USA37, 174–177 (1951). · Zbl 0042.36102
[6] V. L. Klee, Convex bodies and periodic homeomorphisms in Hilbert space. Trans. Amer. math. Soc.74, 10–43 (1953). · Zbl 0050.33202
[7] A. R. Lovaglia, Locally uniformly convex Banach spaces. Trans. Amer. math. Soc.78, 225–238 (1955). · Zbl 0064.35601
[8] G. W. Mackey, On infinite dimensional linear spaces. Trans. Amer. math. Soc.57, 155–207 (1945). · Zbl 0061.24301
[9] S. Mazur, Über schwache Konvergenz in den Räumen (L P ). Studia math.4, 128–133 (1933). · JFM 59.1076.01
[10] V. L. Smulian, Sur la structure de la sphère unitaire de l’espace de Banach. Math. Sbornik n. Ser. 9,51, 545–560 (1941). · Zbl 0028.07101
[11] A. C.Zaanen, Linear Analysis. Amsterdam 1956.
[12] S. I. Zuhovickii, On minimal extensions of linear functionals on continuous function spaces. Izvestija Akad. Nauk SSSR, Ser. mat.21, 409–422 (1957) (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.