×

Unitary representations of group extensions. I. (English) Zbl 0082.11301


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] V. Bargmann, On unitary ray representations of continuous groups.Ann. of Math., 59 (1954), 1–46. · Zbl 0055.10304
[2] W. Burnside,Theory of Groups of Finite Order. Cambridge, 1911. · JFM 42.0151.02
[3] A. H. Clifford, Representations induced in an invariant subgroup.Ann. of Math., 38 (1937), 533–550. · Zbl 0017.29705
[4] J. Dixmier, Sur les représentations unitaires des groupes de Lie nil potents. (To appear inJourn. de Math.)
[5] J. Dixmier, Sur les représentations unitaires des groupes de Lie algébriques. (To appear.)
[6] L. Gårding &A. Wightman, Representations of the anti commutation relations.Proc. Nat. Acad. Sci. U.S.A., 40 (1954), 617–621. · Zbl 0057.09603
[7] P. R. Halmos,Introduction to Hilbert Space and the Theory of Spectral Multiplicity. New York, 1951. · Zbl 0045.05702
[8] J. E. Littlewood,The Theory of Group Characters and Matrix Representations of Groups. Oxford, 1940. · JFM 66.0093.02
[9] G. W. Mackey, On a theorem of Stone and von Neumann.Duke Math. J., 16 (1949), 313–326. · Zbl 0036.07703
[10] –, Imprimitivity for representations of locally compact groups I.Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 537–545. · Zbl 0035.06901
[11] –, Induced representations of locally compact groups I.Ann. of Math., 55 (1952), 101–139. · Zbl 0046.11601
[12] –, Induced representations of locally compact groups II.Ann. of Math., 58 (1953), 193–221. · Zbl 0051.01901
[13] –, Borel structure in groups and their duals.Trans. Amer. Math. Soc., 85 (1957), 134–165. · Zbl 0082.11201
[14] H. Nakano, Unitarinvariante hypermaximale normale Operatoren.Ann. of Math., 42 (1941), 657–664. · JFM 67.0413.01
[15] O. Takenouchi, Families of unitary operators defined on groups.Math. J. Okayama Univ., 6 (1957), 171–179. · Zbl 0080.02301
[16] H. Weyl,The Theory of Groups and Quantum Mechanics. New York, 1931. · JFM 58.1374.01
[17] E. Wigner, On unitary representations of the inhomogeneous Lorentz group.Ann. of Math., 40 (1939), 149–204. · JFM 65.1129.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.