×

zbMATH — the first resource for mathematics

On the uniqueness of compressible fluid motions. (English) Zbl 0089.19103

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Courant, R., & K. Friedrichs: Supersonic Flow and Shock Waves. New York: Interscience 1948. · Zbl 0041.11302
[2] Courant, R., & D. Hilbert: Methoden der Mathematischen Physik, Bd. 2. Berlin: Springer 1936. · Zbl 0156.23201
[3] Dolidze, D. E.: Doklady Akademii Nauk SSSR. 96, 437-439 (1954).
[4] Fo?, E.: Sull’impiego dell’analisi dimensionale nello studio del moto turbolento. L’industria (Milano) 43, 426-429 (1929).
[5] Friedrichs, K.: Symmetric hyperbolic linear differential equations. Communications on Pure and Applied Math. 7, 345-392 (1954). · Zbl 0059.08902 · doi:10.1002/cpa.3160070206
[6] Friedrichs, K., & H. Lewy: ?ber die Eindeutigkeit und das Abh?ngigkeitsgebiet der L?sungen beim Anfangswertproblem linearer hyperbolischer Differentialgleichungen. Math. Annalen 98, 192-204 (1927). · JFM 53.0474.02 · doi:10.1007/BF01451589
[7] Graffi, D.: Il teorema di unicit? nella dinamica dei fluidi compressibili. J. Rational Mechanics and Analysis 2, 99-106 (1953). · Zbl 0050.19604
[8] Graffi, D.: Il teorema di unicit? per i fluidi incompressibili, perfetti, eterogenei. Revista de la Uni?n Matem?tica Argentina 17, 73-77 (1956). · Zbl 0074.20206
[9] Hadamard, J.: Sur l’int?grale residuelle. Bull. Soci?t? Math?matique de France 28, 69-90 (1900). · JFM 31.0377.03
[10] Kiselev, A. A., & O. A. Ladyshenskaya: On the existence and uniqueness of solutions of the initial value problem for viscous incompressible fluids. Izvestia Akademii Nauk SSSR. 21, 655-680 (1957).
[11] Lax, P.: Hyperbolic systems of conservation laws II. Communications on Pure and Applied Math. 10, 537-566 (1957). · Zbl 0081.08803 · doi:10.1002/cpa.3160100406
[12] Mises, R. v.: Mathematical theory of compressible fluid flow. New York: Academic Press 1958. · Zbl 0083.20403
[13] Orr, W. McF.: The stability or instability of the steady motions of a liquid. Part II. A viscous liquid. Proc. Royal Irish Academy (A) 27, 69-138 (1907). · JFM 38.0741.02
[14] Reynolds, O.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions Royal Society of London (A) 186, 123-164 (1895). · JFM 26.0872.02
[15] Serrin, J.: Mathematical principles of classical fluid mechanics. Handbuch der Physik, Bd. 8. Berlin-G?ttingen-Heidelberg: Springer. In press.
[16] Truesdell, C.: The Kinematics of Vorticity. Indiana Univ. Press 1954. · Zbl 0056.18606
[17] Zaremba, S.: Sopra un teorema d’unicita relative alla equazione delle onde spheriche. Rendiconti, Accademia Nazionale dei Lincei (5) 24, 904-908 (1915). · JFM 45.0566.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.