The varimax criterion for analytic rotation in factor analysis. (English) Zbl 0095.33603


62H25 Factor analysis and principal components; correspondence analysis
62P15 Applications of statistics to psychology


Full Text: DOI


[1] Carroll, J. B. An analytical solution for approximating simple structure in factor analysis.Psychometrika, 1953,18, 23–38. · Zbl 0053.27604
[2] Ferguson, G. A. The concept of parsimony in factor analysis.Psychometrika, 1954,19, 281–290. · Zbl 0058.13007
[3] Holzinger, K. J. and Harman, H. H.Factor analysis. Chicago: Univ. Chicago Press, 1941. · Zbl 0060.31208
[4] Kaiser, H. F. An analytic rotational criterion for factor analysis.Amer. Psychologist, 1955,10, 438. (Abstract)
[5] Kaiser, H. F. Note on Carroll’s analytic simple structure.Psychometrika, 1956,21, 89–92. · Zbl 0073.15302
[6] Kaiser, H. F. The varimax method of factor analysis. Unpublished doctoral dissertation, Univ. California, 1956.
[7] Neuhaus, J. O. and Wrigley, C. The quartimax method: an analytical approach to orthogonal simple structure.Brit. J. statist. Psychol., 1954,7, 81–91.
[8] Saunders, D. R. An analytic method for rotation to orthogonal simple structure. Princeton: Educational Testing Service Research Bulletin 53–10, 1953.
[9] Thomson, G. H.The factorial analysis of human ability. (5th ed.) New York: Houghton Mifflin, 1951.
[10] Thurstone, L. L.Theory of multiple factors. Ann Arbor: Edwards Bros., 1932. · JFM 59.1207.20
[11] Thurstone, L. L. Primary mental abilities.Psychometric Monogr. No. 1, 1938.
[12] Thurstone, L. L.Multiple-factor analysis. Chicago: Univ. Chicago Press, 1947. · Zbl 0029.22203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.