The representations of linear functionals by measures on sets of extreme points. (English) Zbl 0096.08103

Full Text: DOI Numdam EuDML


[1] R. ARENS and I. SINGER, Function values as boundary integrals, Proc. Amer. Math. Soc., vol. 5 (1954), 735-745. · Zbl 0056.33501
[2] H. BAUER, Un problème de Dirichlet pour la frontière de šilov d’un espace compact, C. R. Acad. Sci., Paris, vol. 247 (1958), pp. 843-846. · Zbl 0083.09501
[3] E. BISHOP, Some theorems concerning function algebras, Bull. Amer. Math. Soc., vol. 85 (1959), pp. 77-78. · Zbl 0085.06502
[4] E. BISHOP, A minimal boundary for function algebras, to appear in Pacific. Jour. Math. · Zbl 0087.28503
[5] H. BOHNENBLUST and S. KARLIN, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math., vol. 62 (1955), pp. 217-229. · Zbl 0067.35002
[6] N. BOURBAKI, Integration, eléments de mathématiques, XIII, Book VI, Paris, 1952.
[7] G. CHOQUET, Existence des représentations intégrales au moyen des points extrémaux dans LES cônes convexes, C. R. Acad. Sci., Paris, vol. 243 (1956), pp. 699-702. · Zbl 0071.10702
[8] G. CHOQUET, Existence des représentations intégrales dans LES cônes convexes, C. R. Acad. Sci., Paris, Vol. 243 (1956), 736-737. · Zbl 0071.10703
[9] G. CHOQUET, Existence et unicité des représentations intégrales. Séminaire Bourbaki, Décembre 1956, 139-01 à 139-15. · Zbl 0121.09204
[10] I. GLICKSBERG, The representation of functionals by integrals, Duke Math. Jour., vol. 19 (1952), pp. 253-261. · Zbl 0048.09004
[11] P. HALMOS, Measure theory, Van Nostrand, 1950. · Zbl 0040.16802
[12] R. KADISON, A representation theory for commutative topological algebra, Mem. Amer. Math. Soc., n° 7. · Zbl 0042.34801
[13] J. KELLEY, General topology, Van Nostrand, 1957.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.