×

Relaxation methods for linear equations. (English) Zbl 0096.09801


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] and , Reactor criticality and non-negative matrices, WAPD-166, July, 1957.
[2] Collatz, Z. Angew. Math. Physik 4 pp 327– (1953)
[3] What are relaxation methods?, Modern Mathematics for the Engineer, Ed., McGraw-Hill, New York, 1956, pp. 428–447.
[4] Breif an Gerling, Werke, Vol. 9, 1823, pp. 278–281.
[5] Forsythe, Math. Tables and Other Aides to Computation 5 pp 255– (1951)
[6] Keller, Quart. Appl. Math. 16 pp 209– (1958)
[7] Ostrowski, Rend. Mat. e Appl. (5) 14 pp 140– (1954)
[8] Ostrowski, Comment. Math. Helv. 30 pp 175– (1956)
[9] de Rham, Acad. Serbe Sci. Publ. Inst. Math. 4 pp 133– (1952)
[10] Relaxation Methods in Theoretical Physics, Clarendon Press, Oxford, 1946. · Zbl 0061.27706
[11] Stieltjes, Acta Math. 9 pp 385– (1886)
[12] Temple, Proc. Roy. Soc. London. Ser. A 169 pp 476– (1939)
[13] Todd, J. Research Nat. Bur. Standards 60 pp 1– (1958) · Zbl 0093.13301
[14] Kahan, J. Assoc. Comp. Mach. 4 pp 521– (1957)
[15] On the solution of linear equations by certain iteration methods, Reissner Anniversary Volume, J. E. Edwards, Ann Arbor, 1949, pp. 365–393.
[16] Young, Trans. Amer. Math. Soc. 76 pp 92– (1954)
[17] Arms, J. Soc. Indust Appl. Math. 4 pp 220– (1956)
[18] Frankel, Math. Tables and Other Aides to Computation 4 pp 65– (1950)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.