×

zbMATH — the first resource for mathematics

Uniqueness of the self-adjoint extension of singular elliptic differential operators. (English) Zbl 0103.31801

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Browder, F.: On the spectral theory of elliptic differential operators. Math. Ann. 68, 22–130 (1961). · Zbl 0104.07502
[2] Brownell, F. H.: Spectrum of the static potential Schr · Zbl 0044.42703
[3] Brownell, F. H.: A note on Kato’s uniqueness criterion for Schrödinger operator self-adjoint extensions. Pacific J. Math. 9, 953–977 (1959). · Zbl 0178.28203
[4] Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Amer. Math. Soc. 70, 196–211 (1951). · Zbl 0044.42701
[5] Povzner, A. Ya.: On the expansions of arbitrary functions in terms of the eigen-functions of the operator-{\(\Delta\)}u+cu [in Russian]. Mat. Sbornik 32 (74), 109–156 (1953). · Zbl 0050.32201
[6] Stummel, F.: Singuläre elliptische Differentialoperatoren in Hilbertschen Räumen. Math. Ann. 132, 150–176 (1956). · Zbl 0070.34603
[7] Titchmarsh, E. C.: Eigenfunction expansions associated with second-order differential equations, Part II. Oxford 1958. · Zbl 0097.27601
[8] Wienholtz, E.: Halbbeschränkte partielle Differentialoperatoren zweiter Ordnung vom elliptischen Typus. Math. Ann. 135, 50–80 (1958). · Zbl 0142.37701
[9] Wienholtz, E.: Bemerkungen über elliptische Differentialoperatoren. Arch. Math. 10, 126–133 (1959). · Zbl 0109.07202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.