×

Statistical theory of the energy levels of complex systems. I-III. (English) Zbl 0105.41604


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1103/PhysRev.120.957 · Zbl 0097.43604
[2] DOI: 10.1103/PhysRev.120.957 · Zbl 0097.43604
[3] DOI: 10.1103/PhysRev.120.2214
[4] DOI: 10.1103/PhysRev.120.2214
[5] DOI: 10.2307/1969956 · Zbl 0077.31901
[6] DOI: 10.2307/1969956 · Zbl 0077.31901
[7] DOI: 10.2307/1969956 · Zbl 0077.31901
[8] DOI: 10.2307/1969956 · Zbl 0077.31901
[9] DOI: 10.1103/PhysRev.120.1698
[10] DOI: 10.1103/PhysRev.120.1698
[11] DOI: 10.1016/0029-5582(61)90176-6 · Zbl 0107.44605
[12] DOI: 10.1016/0029-5582(61)90176-6 · Zbl 0107.44605
[13] DOI: 10.1016/0029-5582(61)90176-6 · Zbl 0107.44605
[14] DOI: 10.1016/0029-5582(57)90069-X
[15] DOI: 10.1016/0029-5582(57)90069-X
[16] DOI: 10.2307/1969956 · Zbl 0077.31901
[17] DOI: 10.1103/PhysRev.89.619 · Zbl 0050.42905
[18] DOI: 10.1103/PhysRev.88.101 · Zbl 0046.43906
[19] Dieudonné J., Ergeb. d. Math. 5 (1955)
[20] Kramers H. A., Proc. Acad. Sci. Amsterdam 33 pp 959– (1930)
[21] Morley F., Proc. London Math. Soc. 34 pp 397– (1902)
[22] Dixon A. C., Messenger of Math. 20 pp 79– (1891)
[23] Dixon A. C., Proc. London Math. Soc. 35 pp 285– (1903)
[24] DOI: 10.1017/S0013091500033642 · JFM 38.0313.01
[25] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.