Dyson, Freeman J. Statistical theory of the energy levels of complex systems. I-III. (English) Zbl 0105.41604 J. Math. Phys. 3, 140-156, 157-165, 166-175 (1962). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 9 ReviewsCited in 319 Documents MathOverflow Questions: Moments of area of random triangle inscribed in a circle Keywords:physics of many particles PDF BibTeX XML Cite \textit{F. J. Dyson}, J. Math. Phys. 3, 140--156, 157--165, 166--175 (1962; Zbl 0105.41604) Full Text: DOI OpenURL References: [1] DOI: 10.1103/PhysRev.120.957 · Zbl 0097.43604 [2] DOI: 10.1103/PhysRev.120.957 · Zbl 0097.43604 [3] DOI: 10.1103/PhysRev.120.2214 [4] DOI: 10.1103/PhysRev.120.2214 [5] DOI: 10.2307/1969956 · Zbl 0077.31901 [6] DOI: 10.2307/1969956 · Zbl 0077.31901 [7] DOI: 10.2307/1969956 · Zbl 0077.31901 [8] DOI: 10.2307/1969956 · Zbl 0077.31901 [9] DOI: 10.1103/PhysRev.120.1698 [10] DOI: 10.1103/PhysRev.120.1698 [11] DOI: 10.1016/0029-5582(61)90176-6 · Zbl 0107.44605 [12] DOI: 10.1016/0029-5582(61)90176-6 · Zbl 0107.44605 [13] DOI: 10.1016/0029-5582(61)90176-6 · Zbl 0107.44605 [14] DOI: 10.1016/0029-5582(57)90069-X [15] DOI: 10.1016/0029-5582(57)90069-X [16] DOI: 10.2307/1969956 · Zbl 0077.31901 [17] DOI: 10.1103/PhysRev.89.619 · Zbl 0050.42905 [18] DOI: 10.1103/PhysRev.88.101 · Zbl 0046.43906 [19] Dieudonné J., Ergeb. d. Math. 5 (1955) [20] Kramers H. A., Proc. Acad. Sci. Amsterdam 33 pp 959– (1930) [21] Morley F., Proc. London Math. Soc. 34 pp 397– (1902) [22] Dixon A. C., Messenger of Math. 20 pp 79– (1891) [23] Dixon A. C., Proc. London Math. Soc. 35 pp 285– (1903) [24] DOI: 10.1017/S0013091500033642 · JFM 38.0313.01 [25] DOI: 10.1002/j.1538-7305.1948.tb01338.x · Zbl 1154.94303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.