×

zbMATH — the first resource for mathematics

Lokal endliche Gruppen mit nicht-trivialer Partition. (German) Zbl 0106.24701

Keywords:
group theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] R. Baer, Partitionen endlicher Gruppen. Math. Z.75, 333–372 (1961). · Zbl 0103.01404 · doi:10.1007/BF01211032
[2] R. Baer, Einfache Partitionen endlicher Gruppen mit nicht-trivialer Fittingscher Untergruppe. Arch. Math.12, 80–89 (1961). · Zbl 0102.26903 · doi:10.1007/BF01650528
[3] R. Baer, Einfache Partitionen nichteinfacher Gruppen. Math. Z.77, 1–37 (1961). · Zbl 0102.26904 · doi:10.1007/BF01180159
[4] N.Bourbaki, Théorie des ensembles, Chap. III § 12, p. 22. Paris 1956. · Zbl 0074.27701
[5] N.Bourbaki, Topologie générale, Chap. I, Appendice, p. 138. 3e édition, Paris 1961.
[6] W.Burnside, Theory of groups of finite order. 2nd ed., Cambridge 1911. · JFM 42.0151.02
[7] L. E.Dickson, Linear groups. Leipzig 1901. · JFM 32.0134.03
[8] M.Hall, The theory of groups. New York 1959 · Zbl 0084.02202
[9] G. Higman, Groups and rings having automorphisms without non-trivial fixed elements. J. London Math. Soc.32, 321–334 (1957). · Zbl 0079.03203 · doi:10.1112/jlms/s1-32.3.321
[10] D. R. Hughes andJ. G. Thompson, TheH p-problem and the strukture ofH p-groups. Pacific J. Math.9, 1097–1102 (1959). · Zbl 0098.25201 · doi:10.2140/pjm.1959.9.1097
[11] O. H. Kegel, Die Nilpotenz derH p-Gruppen. Math. Z.75, 373–376 (1961). · Zbl 0104.24904 · doi:10.1007/BF01211033
[12] O. H. Kegel undG. E. Wall, Zur Struktur endlicher Gruppen mit nicht-trivialer Partition. Arch. Math.12, 255–261 (1961). · Zbl 0117.26805 · doi:10.1007/BF01650558
[13] P. Kontorowitsch, Sur les groupes à base de partition III (russ.). Mat. Sbornik N. S.22 (64), 79–100 (1948).
[14] N. F. Sesekin andA. I. Starostin, On a class of periodic groups (russ.). Uspechi Mat. Nauk9, 225–228 (1954).
[15] A. I. Starostin, Periodische, lokal auflösbare Gruppen mit vollständiger Partition (russ.). Izvestija vysš. učebn. Zaved., Mat.2 (15), 168–177 (1960).
[16] M. Suzuki, On finite groups with cyclic Sylow subgroups for all odd primes. Amer. J. Math.77, 657–691 (1955). · Zbl 0068.25601 · doi:10.2307/2372591
[17] M. Suzuki, A new type of simple groups of finite order. Proc. Nat. Acad. Sci. USA46, 868–870 (1960). · Zbl 0093.02301 · doi:10.1073/pnas.46.6.868
[18] M. Suzuki, On a finite group with a partition. Arch. Math.12, 241–245 (1961). · Zbl 0107.25902 · doi:10.1007/BF01650557
[19] M. Suzuki, On a class of doubly transitive groups. Ann. of Math., II. Ser.75, 105–145 (1962). · Zbl 0106.24702 · doi:10.2307/1970423
[20] J. G. Thompson, Finite groups with fixed-point-free automorphism of prime order. Proc. Nat. Acad. Sci. USA45, 578–581 (1959). · Zbl 0086.25101 · doi:10.1073/pnas.45.4.578
[21] J.Tits, Les groupes simples de Suzuki et de Ree. Séminaire Bourbaki, exposé No. 210 (1960).
[22] H. Zassenhaus, über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg11, 187–220 (1936). · JFM 61.0126.01 · doi:10.1007/BF02940723
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.