zbMATH — the first resource for mathematics

Tests for departure from normality in the case of linear stochastic processes. (English) Zbl 0107.36503

Full Text: DOI EuDML
[1] Bartlett, M. S.: On the theoretical specification and sampling properties of autocorrelated time series. J. Roy. Stat. Soc. (Suppl), 8 (1946), 27–41. · Zbl 0063.00228
[2] Cramér, H.: Mathematical Methods of Statistics, Princeton University Press, Princeton, 1946. · Zbl 0063.01014
[3] Fréchet, M. and Shohat, J.: A proof of a generalized second-limit theorem. Trans. Amer. Math. Soc., 33, (1931), 533–543. · Zbl 0002.28003
[4] Kendall, M. G.: The Advanced Theory of Statistics, Vol. I., Charles Griffin and Co., London, 1945. · Zbl 0063.03216
[5] Kendall, M. G.: Tables of autoregressive series. Biometrika, 36, (1949), 267–289. · Zbl 0035.21604
[6] Laning, J. H. and Battin, R. H.: Random Processes in Automatic Control, Mac Graw-Hill Book Co., Inc., New York - Toronto - London, 1956.
[7] Lomnicki, Z. A. and Zaremba, S. K.: Some applications of zero-one processes. J. Roy. Stat. Soc., B 17 (1955) 243–255. · Zbl 0067.10802
[8] Lomnicki, Z. A. and Zaremba, S. K.: On some moments and distributions occurring in the theory of linear stochastic processes – I. Monats. für Math. (1957) Vol. 61, 318–358. · Zbl 0084.15001 · doi:10.1007/BF01305937
[9] Moran, P. A. P.: Some theorems on time series I. Biometrika, 34, (1949), 281–291. · Zbl 0030.20301
[10] Pearson, E. S. and Hartley, H. O.: Biometrika Tables for Statisticians, Cambridge University Press, 1954. · Zbl 0056.12701
[11] Uspensky, J. V.: Introduction to Mathematical Probability, Mac Graw-Hill Book Co., New York-London, 1937. · JFM 63.1069.01
[12] Wold, H.: A Study in the Analysis of Stationary Time Series, 2nd. Ed. Almqvist and Wiksell, Stockholm, 1954. · Zbl 0055.13401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.