×

zbMATH — the first resource for mathematics

On the theory of harmonic functions of several variables. II: Behaviour near the boundary. (English) Zbl 0111.08001

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Calderón, A. P., On the behaviour of harmonic functions near the boundary.Trans. Amer. Math. Soc. 68 (1950), 47–54. · Zbl 0035.18901
[2] –, 55–61.
[3] Calderón, A. P. &Zygmund A., On a problem of Mihlin.Trans. Amer. Math. Soc. 78 (1955), 209–224; Singular integral operators and differential equations.Amer. J. Math. 79 (1957), 901–921. · Zbl 0065.04104
[4] Friedrichs, K. O., On certain inequalities and characteristic value problems for analytic functions and functions of two variables.Trans. Amer. Math. Soc. 41 (1937), 321–364. · JFM 63.0364.01 · doi:10.1090/S0002-9947-1937-1501907-0
[5] –, An inequality for potential functions,Amer. J. Math. 68 (1946), 581–592. · Zbl 0061.22904 · doi:10.2307/2371786
[6] Hardy, G. H., Notes on some points in the integral calculus.Messenger of Math. 57 (1928), 12–16. · JFM 54.0310.03
[7] Horváth, J., Sur les functions conjuguées a plusieurs variables.Nederl. Akad. Wetensch. Proc. Ser. A. 16 (1953), 17–29. · Zbl 0050.10501
[8] Stein, E. M., On the functions of Littlewood-Paley, Lusin and Marcinkiewicz.Trans. Amer. Math. Soc. 88 (1958), 430–466. · Zbl 0105.05104 · doi:10.1090/S0002-9947-1958-0112932-2
[9] Stein, E. M. &Weiss, G., On the theory of harmonic functions of several variables. I.Acta Math. 103 (1960), 25–62. · Zbl 0097.28501 · doi:10.1007/BF02546524
[10] Stein, E. M. & Zygmund, A., Smoothness and differentiability of functions. To appear inAnn. Univ. Sci. (Budapest), Sectio Math., 1961. · Zbl 0104.04803
[11] Titchmarsh, E. C.,Introduction to the Theory of Fourier Integrals. Oxford, 1948, Chap. V. · Zbl 0031.03202
[12] Van der Wærden, B. L.,Moderne Algebra, vol. II. Springer.
[13] Zygmund, A.,Trigonometric Series, 2nd edition. Cambridge, 1959. · Zbl 0085.05601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.