×

The extension of interiority, with some applications. (English) Zbl 0113.38001


Keywords:

topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. D. Anderson, On monotone interior mappings in the plane, Trans. Amer. Math. Soc. 73 (1952), 211 – 222. · Zbl 0048.41104
[2] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and its applications, Convegno Internazionale sulle Equazioni Lineari alle Derivate Parziali, Trieste, 1954, Edizioni Cremonese, Roma, 1955, pp. 111 – 140.
[3] R. H. Bing, Upper semicontinuous decompositions of \?³, Ann. of Math. (2) 65 (1957), 363 – 374. · Zbl 0078.15201
[4] Philip T. Church and Erik Hemmingsen, Light open maps on \?-manifolds, Duke Math. J 27 (1960), 527 – 536. · Zbl 0117.40502
[5] J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Dover, New York, 1952. · Zbl 0049.34805
[6] Einar Hille, Analytic function theory. Vol. 1, Introduction to Higher Mathematics, Ginn and Company, Boston, 1959. · Zbl 0088.05204
[7] John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. · Zbl 0718.55001
[8] Charles J. Titus, Sufficient conditions that a mapping be open, Proc. Amer. Math. Soc. 10 (1959), 970 – 973. · Zbl 0105.16803
[9] G. Piranian, C. J. Titus, and G. S. Young, Conformal mappings and Peano curves, Michigan Math. J. 1 (1952), 69 – 72. · Zbl 0049.05403
[10] Gordon Thomas Whyburn, Analytic Topology, American Mathematical Society Colloquium Publications, v. 28, American Mathematical Society, New York, 1942. · Zbl 0061.39301
[11] -, Topological analysis, Princeton Univ. Press, Princeton, N. J., 1958.
[12] Raymond Louis Wilder, Topology of Manifolds, American Mathematical Society Colloquium Publications, vol. 32, American Mathematical Society, New York, N. Y., 1949. · Zbl 0039.39602
[13] R. L. Wilder, Monotone mappings of manifolds, Pacific J. Math. 7 (1957), 1519 – 1528. · Zbl 0086.37302
[14] R. L. Wilder, Monotone mappings of manifolds. II, Michigan Math. J. 5 (1958), 19 – 23. · Zbl 0087.38302
[15] G. S. Young, Extensions of Liouville’s theorem to \? dimensions, Math. Scand. 6 (1958), 289 – 292. · Zbl 0087.08102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.