×

zbMATH — the first resource for mathematics

On quotient groups of finite groups. (English) Zbl 0116.01802

Keywords:
group theory
PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] Baer, R.: Die Existenz Hallscher Normalteiler. Arch. Math.11, 77-87 (1960). · Zbl 0093.24902
[2] Brauer, R., andJ. Tate: On the characters of finite groups. Ann. Math.62, 1-7 (1955). · Zbl 0065.01401
[3] Feit, W., andJ. G. Thompson: A solvability criterion for finite groups and some consequences. Proc. Nat. Acad. Sci. U.S.A.48, 968-970 (1962). · Zbl 0117.26801
[4] Hall, M.: The Theory of Groups. New York: MacMillan 1959. · Zbl 0084.02202
[5] Hall, P.: Theorems like Sylow’s. Proc. London Math. Soc. (3)6, 286-304 (1956). · Zbl 0075.23907
[6] Huppert, B.: Subnormale Untergruppen undp-Sylow-Gruppen. Acta Math. Szeged22, 46-61 (1961). · Zbl 0096.24804
[7] Sah, C. H.: Normal complements in finite groups. Illinois J. Math.6, 282-291 (1962). · Zbl 0105.25602
[8] Tate, J.: Nilpotent Quotient Groups. Forthcoming in Topology. · Zbl 0125.01503
[9] Wielandt, H.: Die Existenz von Normalteilern in endlichen Gruppen. Math. Nachr.18, 274-280 (1959). · Zbl 0082.02501
[10] Zassenhaus, H.: The Theory of Groups, 2nd ed. New York: Chelsea 1958. · Zbl 0083.24517
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.