×

zbMATH — the first resource for mathematics

On the spectrum of a topological tensor product of locally convex algebras. (English) Zbl 0117.09401

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Arens, R. F.: The spaceL ? and convex topological rings. Bull. Am. Math. Soc.52, 931-935 (1946). · Zbl 0060.26901 · doi:10.1090/S0002-9904-1946-08681-4
[2] Bourbaki, N.: Algèbre, Chap. III. Act. Sci. et Ind. 1044, Paris 1958. · Zbl 0098.02501
[3] – Topologie Générale, Chap. I?II. Act. Sci. et Ind. 1142, Paris 1961.
[4] – Topologie Générale, Chap. X. Act. Sci. et Ind. 1084, Paris 1961.
[5] – Espaces vectoriels topologiques, Chap. III?V. Act. Sci. et Ind. 1299, Paris 1955. · Zbl 0066.35301
[6] Gelbaum, B. R.: Tensor products of Banach algebras. Canad. J. Math.11, 297-310 (1959). · Zbl 0086.09503 · doi:10.4153/CJM-1959-032-3
[7] ?? Note on the tensor product of Banach algebras. Proc. Am. Math. Soc.12, 750-757 (1961). · Zbl 0124.32402 · doi:10.1090/S0002-9939-1961-0131186-X
[8] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. Nr.16 (1955).
[9] Michael, E. A.: Locally multiplicatively-convex topological algebras. Mem. Am. Math. Soc. Nr.11 (1952). · Zbl 0047.35502
[10] Rickart, C. E.: General theory of Banach algebras. New York: D. van Nostrand 1960. · Zbl 0095.09702
[11] Schatten, R.: A theory of Cross-Spaces. Ann. Math. Studies26, Princeton 1950. · Zbl 0041.43502
[12] Schwartz, L.: Théorie des distributions. Act. Sci. et Ind. 1245, Paris 1957. · Zbl 0089.09601
[13] Tomiyama, J.: Tensor products of commutative Banach algebras. Tôhoku Math. J.12, 147-154 (1960). · Zbl 0096.08203 · doi:10.2748/tmj/1178244494
[14] Warner, S.: Polynomial completeness in locally multiplicatively-convex algebras. Duke Math. J.23, 1-12 (1956). · Zbl 0070.11801 · doi:10.1215/S0012-7094-56-02301-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.