×

A Radon-Nikodym theorem in dimension lattices. (English) Zbl 0118.02501


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Garrett Birkhoff, Lattice Theory, American Mathematical Society Colloquium Publications, vol. 25, revised edition, American Mathematical Society, New York, N. Y., 1948. · Zbl 0033.10103
[2] Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, Fascicule XXV, Gauthier-Villars, Paris, 1957 (French). · Zbl 0088.32304
[3] J. Dixmier, Sur certains espaces considérés par M. H. Stone, Summa Brasil. Math. 2 (1951), 151 – 182 (French). · Zbl 0045.38002
[4] L. H. Loomis, The lattice theoretic background of the dimension theory of operator algebras, Mem. Amer. Math. Soc. No. 18 (1955), 36. · Zbl 0067.08702
[5] Fumitomo Maeda, Kontinuierliche Geometrien, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Bd. 95, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958 (German). · Zbl 0081.02601
[6] Shûichirô Maeda, Dimension functions on certain general lattices, J. Sci. Hiroshima Univ. Ser. A. 19 (1955), 211 – 237. · Zbl 0068.02502
[7] John von Neumann, Continuous geometry, Foreword by Israel Halperin. Princeton Mathematical Series, No. 25, Princeton University Press, Princeton, N.J., 1960. · Zbl 0171.28003
[8] I. E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953), 401 – 457. · Zbl 0051.34201
[9] M. H. Stone, Boundedness properties in function-lattices, Canadian J. Math. 1 (1949), 176 – 186. · Zbl 0032.16901
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.