×

zbMATH — the first resource for mathematics

Arithmetic subgroups of algebraic groups. (English) Zbl 0119.37001

MSC:
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
20Gxx Linear algebraic groups and related topics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Armand Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20 – 82 (French). · Zbl 0070.26104
[2] C. Hermite, Oeuvres complètes, Vol. 1, Paris, Gauthier-Villars, 1905.
[3] Yozô Matsushima, Espaces homogènes de Stein des groupes de Lie complexes, Nagoya Math. J 16 (1960), 205 – 218 (French). · Zbl 0094.28201
[4] G. D. Mostow, Self-adjoint groups, Ann. of Math. (2) 62 (1955), 44 – 55. · Zbl 0065.01404
[5] Takashi Ono, Sur une propriété arithmétique des groupes algébriques commutatifs, Bull. Soc. Math. France 85 (1957), 307 – 323 (French). · Zbl 0083.03403
[6] K. G. Ramanathan, Units of fixed points in involutorial algebras, Proceedings of the international symposium on algebraic number theory, Tokyo & Nikko, 1955, Science Council of Japan, Tokyo, 1956, pp. 103 – 106.
[7] Séminaire S. Lie, Théorie des algèbres de Lie, Topologie des groupes de Lie, Paris, 1954-1955.
[8] Carl Ludwig Siegel, Einheiten quadratischer Formen, Abh. Math. Sem. Hansischen Univ. 13 (1940), 209 – 239 (German). · Zbl 0023.00701
[9] A. Weil, Discontinuous subgroups of classical groups, Notes, University of Chicago, 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.