×

zbMATH — the first resource for mathematics

Taming Cantor sets in \(E^ n\). (English) Zbl 0122.18101

Keywords:
topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] L. Antoine, Sur l’homĂ©omorphie de deux figures et de leurs voisinages, J. Math. Pures Appl. 86 (1921), 221-325. · JFM 48.0650.01
[2] R. H. Bing, Tame Cantor sets in \?³, Pacific J. Math. 11 (1961), 435 – 446. · Zbl 0111.18606
[3] William A. Blankinship, Generalization of a construction of Antoine, Ann. of Math. (2) 53 (1951), 276 – 297. · Zbl 0042.17601 · doi:10.2307/1969543 · doi.org
[4] Karol Borsuk, An example of a simple arc in space whose projection in every plane has interior points, Fund. Math. 34 (1947), 272 – 277. · Zbl 0032.31404
[5] Samuel Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), 613 – 622. · Zbl 0061.41103 · doi:10.2307/2371708 · doi.org
[6] V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29 – 53, 129 – 152. · Zbl 0050.17902 · doi:10.1112/plms/s3-3.1.29 · doi.org
[7] J. P. Hempel and D. R. McMillan, Jr., Locally nice embeddings of manifolds (to appear). · Zbl 0139.17001
[8] Tatsuo Homma, On tame imbedding of 0-dimensional compact sets in \?³, Yokohama Math. J. 7 (1959), 191 – 195. · Zbl 0094.36005
[9] A. Kirkor, Wild 0-dimensional sets and the fundamental group, Fund. Math. 45 (1958), 228 – 236. · Zbl 0080.16803
[10] D. R. McMillan Jr., A criterion for cellularity in a manifold, Ann. of Math. (2) 79 (1964), 327 – 337. · Zbl 0117.17102 · doi:10.2307/1970548 · doi.org
[11] M. H. A. Newman, On the superposition of n-dimensional manifolds, J. London Math. Soc. 2 (1927), 56-64.
[12] J. H. C. Whitehead, On subdivisions of complexes, Proc. Cambridge Philos. Soc. 31 (1935), 69-75. · Zbl 0011.03603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.