zbMATH — the first resource for mathematics

Intersecting random translates of invariant Cantor sets. (English) Zbl 0745.28012
Point of departure of this rich paper is an isolated result of J. Hawkes: the Hausdorff dimension of \(C\cap(C+t)\) equals \({1\over 3}\log 2/\log 3\) for almost all \(t\in(0,1)\), where \(C\) is the classical middle third Cantor set. The authors explain and reprove (in several ways) this result by revealing deep connections with entropy theory in ergodic theory and the theory of products of i.i.d. random matrices. From the many results we cite just one which describes the ‘multifractal’ structure of the set above: \[ \dim\{t: \dim(C\cap(C+t))=\alpha \log 2/\log 3\}=h(\textstyle{{1\over 2}}(1-\alpha), \alpha, \textstyle{{1\over 2}}(1- \alpha))/\log 3, \] for each \(\alpha\in(0,1)\), where \(h(p_ 1,p_ 2,p_ 3)=-p_ 1\log p_ 1-p_ 2\log p_ 2-p_ 3\log p_ 3\).

28D99 Measure-theoretic ergodic theory
28A80 Fractals
11K55 Metric theory of other algorithms and expansions; measure and Hausdorff dimension
60F10 Large deviations
Full Text: DOI EuDML
[1] [BKM] Boyle, M., Kitchens, B., Marcus, B.: A note on minimal covers for sofic systems. Proc. Am. Math. Soc.95, 403-411 (1985) · Zbl 0606.28016
[2] [BL] Bougerol, P., Lacroix, J.: Products of random matrices with applications to Schroedinger operators. Boston: Birkhäuser 1985 · Zbl 0572.60001
[3] [Bil 1] Billingsley, P.: Hausdorff dimension in probability theory. Ill. J. Math.4, 187-209 (1960) · Zbl 0098.10602
[4] [Bil 2] Billingsley, P.: Ergodic Theory and Information. New York: Wiley 1965 · Zbl 0141.16702
[5] [Bow] Bowen, R.: Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math. Soc.153, 401-414 (1971) · Zbl 0212.29201
[6] [Caj] Cajar, H.: Billingsley Dimension in Probability Spaces. Lect. Notes Math., vol. 892. Berlin Heidelberg New York: Springer 1981 · Zbl 0508.60002
[7] [Dek] Dekking, F.M.: Recurrent Sets. Adv. Math.44, 78-104 (1982) · Zbl 0495.51017
[8] [Del] Dellacherie, C.: Ensembles analytiques, capacités, measures de Hausdorff. Berlin Heidelberg New York: Springer 1972
[9] [FK] Furstenberg, H., Kesten, H.: Products of Random Matrices. Ann. Math. Stat.31, 457-469 (1960) · Zbl 0137.35501
[10] [Fal] Falconer, K.J.: The Geometry of Fractal Sets. Cambridge University Press 1985 · Zbl 0587.28004
[11] [Fur 1] Furstenberg, H.: Disjointness in ergodic theory, minimal sets and a problem in Diophantine approximation. Math. Syst. Theory1, 1-49 (1967) · Zbl 0146.28502
[12] [Fur 2] Furstenberg, H.: Intersections of Cantor sets and transversality of semigroups. In: Gunning, R.C. (ed.): Problems in Analysis, a symposium in honor of S. Bochner. Princeton University Press 1970
[13] [Fur 3] Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press 1981 · Zbl 0459.28023
[14] [Fur 4] Furstenberg, H.: personal communication
[15] [Gol] Goldberger, J.: Sofic systems and symbolic renewal systems. PhD thesis, Tel-Aviv University 1989
[16] [H] Hawkes, J.: Some algebraic properties of small sets. Q. J. Math. Oxf.26, 195-201 (1975) · Zbl 0315.28002
[17] [HJK*] Halsey, T., Jensen, M., Kadanoff, L., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A33, 1141-1151 (1986) · Zbl 1184.37028
[18] [Hau] Hausdorff, F.: Dimension und äußeres Maß. Math. Ann.79, 157-179 (1919) · JFM 46.0292.01
[19] [KS] Keane, M., Smorodinsky, M.: ?-expansions. preprint 1989
[20] [KT] Kolmogoroff, A., Tihomirov, V.M.: Epsilon entropy and epsilon-capacity of sets in functional spaces. AMS Trans.17, 277-364 (1959)
[21] [Kif] Kifer, Y.: Ergodic theory of random transformations. Boston: Birkhäuser 1986 · Zbl 0604.28014
[22] [LW] Ledrappier, F., Walters, P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc.16, 568-576 (1977) · Zbl 0388.28020
[23] [Led] Ledrappier, F.: personal communication
[24] [Mar] Marstrand, J.: Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc.4, 257-302 (1954) · Zbl 0056.05504
[25] [Mat] Mattila, P.: Hausdorff dimension and capacities of intersections of sets inn-space. Acta Math.152, 77-105 (1984) · Zbl 0544.28004
[26] [Mor] Moran, P.A.P.: Additive functions of intervals and Hausdorff measure. Proc. Cambr. Phil. Soc.42, 15-23 (1946) · Zbl 0063.04088
[27] [Ose] Oseledec, V.I.: A multiplicative ergodic theorem; Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc.19, 197-221 (1968)
[28] [PT] Palis, J., Takens, F.: Hyperbolicity and the creation of homoclinic orbits. Ann. Math.125, 337-374 (1987) · Zbl 0641.58029
[29] [Par] Parry, W.: Intrinsic Markov chains. Trans. AMS112, 55-65 (1964) · Zbl 0127.35301
[30] [Thu] Thurston, W.P.: Groups, Tilings, and Finite State Automata. In: AMS Colloq. Lect. 1989
[31] [Tri] Tricot, C.: Douze definitions de la densité logarithmique. Comptes Rend. Acad. Sc. Paris293, 549-552 (1981) · Zbl 0483.28011
[32] [Wal] Walters, P.: An Introduction to Ergodic Theory. Berlin Heidelberg New York: Springer 1982 · Zbl 0475.28009
[33] [Wei] Weiss, B.: Subshifts of finite type and sofic systems. Monatsh. Math.77, 462 474 (1973) · Zbl 0285.28021
[34] [Y] Young, L.S.: Dimension, Entropy and Lyapunov exponents. Ergodic Theory Dyn. Syst.2, 109-124 (1982) · Zbl 0523.58024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.