zbMATH — the first resource for mathematics

On thermodynamics, strain impulses, and viscoelasticity. (English) Zbl 0125.13603

Full Text: DOI
[1] Coleman, B. D., Thermodynamics of materials with memory. Arch. Rational Mech. Anal. 17, 1–46 (1964).
[2] Coleman, B. D., & W. Noll, Foundations of linear viscoelasticity. Rev. Modern Phys. 33, 239–249 (1961). · Zbl 0103.40804
[3] Green, A. E., & R. S. Rivlin, The mechanics of non-linear materials with memory, Part I. Arch. Rational Mech. Anal. 1, 1–21 (1957). · Zbl 0079.17602
[4] Noll, W., A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197–226 (1958). · Zbl 0083.39303
[5] Piola, G., La meccanica dei corpi naturalmente estesi trattata col calcolo delle variazioni. Opusc. mat. fis. di diversi autori. Milano: Giusti 1, 201–236 (1833).
[6] Truesdell, C., & R. A. Toupin, The classical field theories. In: Encyclopedia of Physics, Vol. III/1, edited by S. Flügge. Berlin-Göttingen-Heidelberg: Springer 1960.
[7] Truesdell, C., The mechanical foundations of elasticity and fluid dynamics. J. Rational Mech. Anal. 1, 125–300 (1952). · Zbl 0046.17306
[8] Cosserat, E. & CosseratF., Sur la théorie de l’élasticité. Ann. Toulouse 10, (I), 1–116 (1896).
[9] Noll, W., On the continuity of the solid and fluid states. J. Rational Mech. Anal. 4, 13–81 (1955). · Zbl 0064.42001
[10] Boltzmann, L., Zur Theorie der elastischen Nachwirkung. Sitzber. Kaiserlich. Akad. Wiss. (Wien), Math.-Naturwiss. Kl. 70, Sect. II, 275–306 (1874).
[11] Gurtin, M. E., & E. Sternberg, On the linear theory of viscoelasticity. Arch. Rational Mech. Anal. 11, 291–356 (1962). · Zbl 0107.41007
[12] Coleman, B. D., & W. Noll, An approximation theorem for functionals with applications in continuum mechanics. Arch. Rational. Mech. Anal. 6, 355–360 (1960). · Zbl 0097.16403
[13] Coleman, B. D., & W. Noll, Simple fluids with fading memory. In: Proc. Internat. Sympos. Second-Order Effects, Haifa, 1962, pp. 530–552, New York: Macmillan Co. 1964.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.