×

zbMATH — the first resource for mathematics

Über die Anzahl der Erzeugenden eines Ideals in einem Noetherschen Ring. (German) Zbl 0126.27303
Math. Z. 84, 80-87 (1964); Berichtigung. Ibid. 86, 190 (1964).

PDF BibTeX Cite
Full Text: DOI EuDML
References:
[1] Bourbaki, N.: Algèbre commutative. Paris: Hermann 1961. · Zbl 0108.04002
[2] Cohen, I. S.: Commutative rings with restricted minimum condition. Duke Math. J.17, 27?42 (1950). · Zbl 0041.36408
[3] Forster, O., u.K. J. Ramspott: Über die Darstellung analytischer Mengen. Sb. Bayer. Akad. Wiss., Math.-Naturw. Kl., Jahrg. 1963, 89?99. · Zbl 0123.27104
[4] Grothendieck, A., etJ. Dieudonné: Éléments de géométrie algébrique. Publ. Math. I. H. E. S. Paris 1960.
[5] Kneser, M.: Über die Darstellung algebraischer Raumkurven als Durchschnitte von Flächen. Arch. Math.11, 157?158 (1960). · Zbl 0093.34202
[6] Kronecker, L.: Grundzüge einer arithmetischen Theorie der algebraischen Größen. J. reine angew. Math.92, 1?123 (1882). · JFM 14.0038.02
[7] Krull, W.: Dimensionstheorie in Stellenringen. J. reine angew. Math.179, 204?226 (1938). · JFM 64.0078.02
[8] Nagata, M.: Local rings. New York: Interscience 1962. · Zbl 0123.03402
[9] Northcott, D. G.: Ideal theory. Cambridge: Univ. Press 1953. · Zbl 0052.26801
[10] Perron, O.: Beweis und Verschärfung eines Satzes von Kronecker. Math. Ann.118, 441?448 (1941/43). · Zbl 0027.19801
[11] Serre, J. P.: Sur la dimension homologique des anneaux et des modules noethériens. Proc. Intern. Symp. Algebraic Number Theory. Tokio-Nikko 1955.
[12] Zariski, O.: The concept of a simple point of an abstract algebraic variety. Trans. Amer. Math. Soc.62, 1?52 (1947). · Zbl 0031.26101
[13] ?, andP. Samuel: Commutative algebra I, II. Princeton: Van Nostrand 1958.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.