×

zbMATH — the first resource for mathematics

On the steady-state solutions of the Navier-Stokes equations. III. (English) Zbl 0126.42203

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Finn, R., On steady-state solutions of the Navier-Stokes partial differential equations.Arch. Rat. Mech. Anal., 3 (1959), 381–396. · Zbl 0104.42305 · doi:10.1007/BF00284188
[2] Finn, R., Estimates at infinity for steady-state solutions of the Navier-Stokes equations. To appear inBull. Math. Soc. Sci. Math. Phys. R.P.R.
[3] Finn, R. &Gilbarg, D., Asymptotic behavior and uniqueness of plane subsonic flows.Comm. Pure Appl. Math., 10 (1957), 23–63; Three-dimensional subsonic flows, and asymptotic estimates for elliptic partial differential equations.Acta Math., 98 (1957), 265–296. · Zbl 0077.18801 · doi:10.1002/cpa.3160100102
[4] Finn, R. &Noll, W., On the uniqueness and non-existence of Stokes flows.Arch. Rat. Mech. Anal., 1 (1957), 97–106. · Zbl 0079.12104 · doi:10.1007/BF00297998
[5] Hopf, E., Ein allgemeiner Endlichkeitssatz der Hydrodynamik.Math. Ann., 117 (1940–1941), 764–775. · Zbl 0024.13505 · doi:10.1007/BF01450040
[6] Kotschin, N. J., Kibel, I. A. &Rose, N. W.,Theoretische Hydromechanik, Band II (translation from the Russian). Akademic-Verlag, Berlin 1955.
[7] Ладуженская, O. A., Исследование уравнения Навье-Стокса в случае стационарного двизения несжимаемой жидкости.Усхеху Мам. Наук, 14 (1959), 75–97. · Zbl 1200.11037
[8] Leray, J., Etude de diverses équations integrales non linéaires et de quelques problèmes que pose l’Hydrodynamique.J. Math. Pures Appl., 9 (1933), 1–82. See also: Les problèmes non linéaires.Enseignement Math., 35 (1936), 139–151. · Zbl 0006.16702
[9] Leray, J. &Schauder, J., Topologie et équations fonctionnelles.Ann. Sci. Ecole Norm. Sup., 51 (1934), 45–78. · Zbl 0009.07301
[10] Lichtenstein, L., Über einige Existenzprobleme der Hydrodynamik. Dritte Abhandlung.Math. Z., 28 (1928), 387–415. · JFM 54.0905.02 · doi:10.1007/BF01181173
[11] Odqvist, F. K. G.,Die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten. Stockholm 1928, P. A. Norstedt & Söner. See alsoMath. Z., 32 (1930), 329–375.
[12] Oseen, C. W.,Neuere Methoden und Ergebnisse in der Hydrodynamik. Akademische Verlagsgesellschaft M. B. H., Leipzig 1927. · JFM 53.0773.02
[13] Payne, L. E., &Weinberger, H. F. Note on a lemma of Finn and Gilbarg.Acta Math., 98 (1957), 297–299. · Zbl 0078.40002 · doi:10.1007/BF02404477
[14] Reynolds, O., On the dynamical theory of incompressible viscous fluids, and the determinaton of the criterion.Philos., Trans. Roy. Soc. London, Ser. A, 186 (1895), p. 123. · JFM 26.0872.02 · doi:10.1098/rsta.1895.0004
[15] de Rham, G.,Variétés différentiables: formes, courants, formes harmoniques. Hermann et Cie, Paris 1955. · Zbl 0065.32401
[16] Serrrin, J.,Mathematical Principles of Classical Fluid Mechanics. Handbuch der Physik, vol. VIII/1. Springer-Verlag, 1959; On the Stability of Viscous fluid Motions,Arch. Rat. Mech. Anal., 3 (1959), 1–13.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.