×

zbMATH — the first resource for mathematics

Nonlinear elliptic boundary value problems. II. (English) Zbl 0127.31903

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Felix E. Browder, Functional analysis and partial differential equations. I, Math. Ann. 138 (1959), 55 – 79. · Zbl 0086.10301
[2] Felix E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1960/1961), 22 – 130. · Zbl 0104.07502
[3] Felix E. Browder, The solvability of non-linear functional equations, Duke Math. J. 30 (1963), 557 – 566. · Zbl 0119.32503
[4] Felix E. Browder, Variational boundary value problems for quasi-linear elliptic equations of arbitrary order, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 31 – 37. · Zbl 0117.07102
[5] Felix E. Browder, Variational boundary value problems for quasi-linear elliptic equations. II, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 592 – 598. · Zbl 0121.08301
[6] Felix E. Browder, Variational boundary value problems for quasi-linear elliptic equations. III, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 794 – 798. · Zbl 0158.12302
[7] Felix E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862 – 874. · Zbl 0127.31901
[8] Felix E. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485 – 523. · Zbl 0127.33602
[9] Felix E. Browder, Strongly non-linear parabolic boundary value problems, Amer. J. Math. 86 (1964), 339 – 357. · Zbl 0143.33501
[10] -, Nonlinear parabolic boundary problems of arbitrary order, Bull. Amer. Math. Soc. 69 (1963), 860-863. · Zbl 0149.32602
[11] G. Köthe, Topologische lineare Räume, Vol. 1, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Bd. 107, Springer, Berlin, 1960. · Zbl 0093.11901
[12] Топологические методы в теорий нелинейных интеграл\(^{\приме}\)ных уравнений., Государств. Издат. Техн.-Теор. Лит., Мосцощ, 1956 (Руссиан).
[13] -, On a new fixed point principle, Trudy Mat. Seminar Voronezh Univ. (1958), 87-90. (Russian)
[14] Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45 – 78 (French). · Zbl 0009.07301
[15] George J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341 – 346. · Zbl 0111.31202
[16] George J. Minty, Two theorems on nonlinear functional equations in Hilbert space, Bull. Amer. Math. Soc. 69 (1963), 691 – 692. · Zbl 0122.35403
[17] George J. Minty, on a ”monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038 – 1041. · Zbl 0124.07303
[18] M. M. Vainberg, Variational methods for the study of nonlinear operators, Moscow, 1956. (Russian)
[19] M. M. Vaĭnberg and R. I. Kačurovskiĭ, On the variational theory of non-linear operators and equations, Dokl. Akad. Nauk SSSR 129 (1959), 1199 – 1202 (Russian). · Zbl 0094.10801
[20] M. I. Višik, Solution of a system of quasilinear equations having divergence form, under periodic boundary conditions, Dokl. Akad. Nauk SSSR 137 (1961), 502 – 505 (Russian).
[21] M. I. Višik, Boundary-value problems for quasilinear strongly elliptic systems of equations having divergence form, Dokl. Akad. Nauk SSSR 138 (1961), 518 – 521 (Russian).
[22] -, Simultaneous quasi-linear equations with lower order terms, Dokl. Akad. Nauk SSSR 144 (1962), 13-16. Soviet Math. Dokl. 3 (1962), 629-633.
[23] M. I. Višik, Quasi-linear strongly elliptic systems of differential equations of divergence form, Trudy Moskov. Mat. Obšč. 12 (1963), 125 – 184 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.