zbMATH — the first resource for mathematics

Surface waves of finite depth. (English) Zbl 0128.44502

fluid mechanics
Full Text: DOI
[1] K. O. Friedrichs, ”über ein Minimumproblem für Potentialströmungen mit freiem Rande,”Math. Ann., vol.109 (1934), pp. 60–82. · JFM 59.1447.01 · doi:10.1007/BF01449125
[2] K. O. Friedrichs, ”Pinch buckling”,Rev. Modern Phys., vol.32 (1960), pp. 889–897. · Zbl 0098.44104 · doi:10.1103/RevModPhys.32.889
[3] P. R. Garabedian,Partial Differential Equations, Wiley, New York, 1964. · Zbl 0124.30501
[4] P. R. Garabedian, ”Proof of uniqueness by symmetrization,”Studies in mathematical analysis and related topics: Essays in honor of George Pólya, Stanford University Press, Stanford, 1962, pp. 126–127.
[5] P. R. Garabedian, ”Lectures on function theory and partial differential equations,”Rice University Studies, 1963. · Zbl 0133.04402
[6] P. R. Garabedian and H. L. Royden, ”A remark on cavitational flow,”Proc. Nat. Acad. Sci. U.S.A., vol.38 (1952), pp. 57–61. · Zbl 0046.18502 · doi:10.1073/pnas.38.1.57
[7] P. R. Garabedian and D. C. Spencer, ”Extremal methods in cavitational flow,”J. Ratl. Mech. Anal., vol.1 (1952), pp. 359–409. · Zbl 0046.18504
[8] J. L. Kazdan, ”A boundary value problem arising in the theory of univalent functions,”J. Math. Mech., vol.13 (1964), pp. 283–303. · Zbl 0192.17402
[9] H. Lewy, ”On steady free surface flow in a gravity field,”Comm. Pure Appl. Math., vol.5 (1952), pp. 413–414. · Zbl 0048.19201 · doi:10.1002/cpa.3160050402
[10] M. Morse, The calculus of variations in the large,A.M. S. Colloquium Publ., vol.18, New York, 1934. · Zbl 0011.02802
[11] G. Pólya and G. Szegö,Isoperimetric inequalities in mathematical physics, Princeton University Press, Princeton, 1951. · Zbl 0044.38301
[12] M. Shiftman, ”The Plateau problem for non-relative minima,”Ann. Math., vol.40 (1939), pp. 834–854. · Zbl 0023.39802 · doi:10.2307/1968897
[13] J. J. Stoker,Water waves, Interscience, New York, 1957. · Zbl 0078.40805
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.