×

A class of methods for solving nonlinear simultaneous equations. (English) Zbl 0131.13905


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] William C. Davidon, Variable metric method for minimization, SIAM J. Optim. 1 (1991), no. 1, 1 – 17. · Zbl 0752.90062
[2] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization, Comput. J. 6 (1963/1964), 163 – 168. · Zbl 0132.11603
[3] Ferdinand Freudenstein and Bernard Roth, Numerical solution of systems of nonlinear equations, J. Assoc. Comput. Mach. 10 (1963), 550 – 556. · Zbl 0131.33703
[4] Alston S. Householder, Principles of numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953. · Zbl 0051.34602
[5] William Kizner, A numerical method for finding solutions of nonlinear equations, J. Soc. Indust. Appl. Math. 12 (1964), 424 – 428. · Zbl 0202.43607
[6] M. J. D. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J. 7 (1964), 155 – 162. · Zbl 0132.11702
[7] M. J. D. Powell, A method for minimizing a sum of squares of non-linear functions without calculating derivatives, Comput. J. 7 (1965), 303 – 307. · Zbl 0142.11601
[8] B. Randell, ”The Whetstone KDF9 ALGOL Translator,” Introduction to System Programming, P. Wegner , Academic Press, London, 1964, pp. 122-136.
[9] Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. · Zbl 0133.08602
[10] R. S. Varga, op. cit., p. 62.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.