×

zbMATH — the first resource for mathematics

On integral equations of Volterra type. (English) Zbl 0134.31502

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. E. Benes. Ultimately periodic solutions to a nonlinear integrodifferential equation,The Bell System Tech. J., vol. 41 (1962), 257–268.
[2] A. Erdélyi and others,Higher Transcendental Functions, Bateman Manuscript Project, vol. 3, McGraw-Hill, 1955.
[3] A. Friedman, A new proof and generalizations of the Cauchy-Kowalewski Theorem,Trans. Amer. Math. Soc., vol. 98 (1961), 1–20. · Zbl 0117.31002 · doi:10.1090/S0002-9947-1961-0166462-2
[4] J. J. Levin, The asymptotic behaviour of the solution of a Volterra equation,Proc. Math. Soc., to appear. · Zbl 0115.32403
[5] W. R. Mann and F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions,Quar. Appl. Math., vol. 9 (1951), 163–184. · Zbl 0043.10001
[6] J. A. Nohel, Some problems in nonlinear Volterra integral equations,Bull. Amer. Math. Soc., vol. 68 (1962), 323–329. · Zbl 0106.08303 · doi:10.1090/S0002-9904-1962-10790-3
[7] J. A. Nohel and J. J. Levin, Note on a nonlinear Volterra equation, to appear. · Zbl 0151.16904
[8] K. Padmavally, On a nonlinear integral equation,J. Math. and Mech., vol. 7 (1958), 533–555. · Zbl 0082.32201
[9] H. Pollard, The completely monotonic character of the Mittag-Leffler functionE \(\alpha\)(),Bull. Amer. Math. Soc., vol. 54 (1948), 1115–1116. · Zbl 0033.35902 · doi:10.1090/S0002-9904-1948-09132-7
[10] J. H. Roberts and W. R. Mann, On a certain nonlinear integral equation of the Volterra type,Pacific J. Math., vol. 1 (1951), 431–445. · Zbl 0044.32202
[11] T. Sato, Sur l’équation intégrale non linéaire de Volterra,Comp. Math., vol. 11 (1953), 271–290.
[12] D. V. Widder,The Laplace Transform, Princeton University Press, 1946. · Zbl 0060.24801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.