×

zbMATH — the first resource for mathematics

Nonlinear elliptic functional equations in nonreflexive Banach spaces. (English) Zbl 0135.17602

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Felix E. Browder, Nonlinear elliptic boundary value problems, Bull. Amer. Math. Soc. 69 (1963), 862 – 874. · Zbl 0127.31901
[2] Felix E. Browder, Strongly non-linear parabolic boundary value problems, Amer. J. Math. 86 (1964), 339 – 357. · Zbl 0143.33501 · doi:10.2307/2373169 · doi.org
[3] Felix E. Browder, Nonlinear elliptic problems. II, Bull. Amer. Math. Soc. 70 (1964), 299 – 302. · Zbl 0127.31902
[4] Felix E. Browder, Nonlinear elliptic boundary value problems. II, Trans. Amer. Math. Soc. 117 (1965), 530 – 550. · Zbl 0127.31903
[5] Felix E. Browder, Non-linear equations of evolution, Ann. of Math. (2) 80 (1964), 485 – 523. · Zbl 0127.33602 · doi:10.2307/1970660 · doi.org
[6] Felix E. Browder, Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc. 118 (1965), 338 – 351. · Zbl 0138.39903
[7] Felix E. Browder, Non-linear initial value problems, Ann. of Math. (2) 82 (1965), 51 – 87. · Zbl 0131.13502 · doi:10.2307/1970562 · doi.org
[8] Felix E. Browder, Remarks on nonlinear functional equations, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 985 – 989. · Zbl 0126.12301
[9] Felix E. Browder, Existence and uniqueness theorems for solutions of nonlinear boundary value problems, Proc. Sympos. Appl. Math., Vol. XVII, Amer. Math. Soc., Providence, R.I., 1965, pp. 24 – 49.
[10] Felix E. Browder, Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780 – 785. · Zbl 0138.39902
[11] Felix E. Browder, Nonlinear operators in Banach spaces, Math. Ann. 162 (1965/1966), 280 – 283. · Zbl 0148.13403 · doi:10.1007/BF01360916 · doi.org
[12] Ju. A. Dubinskiĭ, Some integral inequalities and the solvability of degenerate quasi-linear elliptic systems of differential equations, Mat. Sb. (N.S.) 64 (106) (1964), 458 – 480 (Russian).
[13] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential-functional equations, (to appear). · Zbl 0142.38102
[14] M. A. Krasnosel\(^{\prime}\)skiĭ and Ja. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
[15] Jean Leray and Jacques-Louis Lions, Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97 – 107 (French). · Zbl 0132.10502
[16] Jean Leray and Jules Schauder, Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 51 (1934), 45 – 78 (French). · Zbl 0009.07301
[17] George J. Minty, on a ”monotonicity” method for the solution of non-linear equations in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 50 (1963), 1038 – 1041. · Zbl 0124.07303
[18] M. I. Višik, Quasi-linear strongly elliptic systems of differential equations of divergence form, Trudy Moskov. Mat. Obšč. 12 (1963), 125 – 184 (Russian).
[19] M. I. Višik, On the solvability of the first boundary-value problem for quasi-linear equations with coefficients of rapid growth in Orlicz classes, Dokl. Akad. Nauk SSSR 151 (1963), 758 – 761 (Russian).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.