×

zbMATH — the first resource for mathematics

Charakterisierung der Entropien positiver Ordnung und der Shannonschen Entropie. (German) Zbl 0138.14904

MSC:
94A17 Measures of information, entropy
39B05 General theory of functional equations and inequalities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Aczél,Vorlesungen über Funktionalgleichungen und ihre Anwendungen (Basel–Stuttgart und Berlin, 1961).
[2] A. Adam, Anmerkungen betreffend eine ”Statistische Technologie”,Unternehmensforschung,5 (1961), S. 172–181. · doi:10.1007/978-3-662-39426-7_27
[3] E. F. Beckenbach, Convex functions,Bull. Amer. Math. Soc.,54 (1948), S. 439–460. · Zbl 0041.38003 · doi:10.1090/S0002-9904-1948-08994-7
[4] E. F. Beckenbach-R. Bellman,Inequalities, Ergebnisse d. Math. u. ihrer Grenzg. NF 30 (Berlin-Göttingen-Heidelberg 1961).
[5] R. Bellman,Dynamic programming (Princeton, 1957). · Zbl 0077.13605
[6] T. W. Chaundy-J. B. Mc Loed, On a functional equation,Edinburgh Math. Notes,43 (1960), S. 7–8. · Zbl 0100.32703 · doi:10.1017/S0950184300003244
[7] А. Я. Хинчин, Понятие энтропии в теории вероятностей, Успехи Мат. Наук,8 (1953), вьш. 3(55), S. 3–20. (Auch in deutscher Sprache erschienen in dem SammelbandArbeiten zur Informationstheorie. I, Berlin, 1957, S. 7–25). · Zbl 0084.45004
[8] А. Я. Хинчин, Об основых теоремах теории информации, Успехи Мат. Наук,11 (1956), вып. 1(67), S. 17–75. (Deutsch in denArbeiten zur Informationsteorie I.), Berlin, 1957, S. 26–85).
[9] P. Erdos, On the distribution function of additive functions,Ann. of Math.,47 (1946), S. 1–20. · Zbl 0061.07902 · doi:10.2307/1969031
[10] L. Fuchs, A new proof of an inequality of Hardy-Littlewood-Pólya,Mat. Tidsskr.,B (1947), S. 53–54. · Zbl 0030.02703
[11] G. H. Hardy-J. E. Littlewood-G. Pólya,Inequalities (Cambridge, 1934, 1952). · JFM 60.0169.01
[12] R. V. Hartley, Transmission of information,Bell System Tech. J.,7 (1928), S. 535–563. · doi:10.1002/j.1538-7305.1928.tb01236.x
[13] L. Moser-J. Lambek, On monotone multiplicative functions,Proc. Amer. Math. Soc.,4 (1953), S. 544–545. · Zbl 0050.26805 · doi:10.1090/S0002-9939-1953-0056630-3
[14] A. Rényi, On a theorem of P. Erdos and its application in information theory,Mathematica (Cluj),1 (24) (1959), S. 341–344.
[15] A. Rényi, Az információelmélet néhány alapveto kérdése,Magyar Tud. Akad. Mat. Fiz. Oszt. Közl.,10 (1960), S. 251–282.
[16] A. Rényi, On measures of entropy and information,Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1960. I (Berkeley, 1961, S. 547–561).
[17] C. E. Shannon, A mathematical theory of communication, I,Bell System Tech. J.,27 (1948), S. 379–423 · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb01338.x
[18] C. E. Shannon, A mathematical theory of communication. II,Bell System Tech. J.,27 (1948), S. 623–656. · Zbl 1154.94303 · doi:10.1002/j.1538-7305.1948.tb00917.x
[19] C. E. Shannon-W. Weaver,The mathematical theory of communication (Urbana, 1949). · Zbl 0041.25804
[20] A. Wouk, Concave functionals and a problem of Bellman,Amer. Math. Monthly,68 (1961), S. 479–480. · Zbl 0107.32303 · doi:10.2307/2311107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.