×

zbMATH — the first resource for mathematics

Certain non-steady flows of second-order fluids. (English) Zbl 0139.20105

Keywords:
fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Reiner, M.: A mathematical theory of dilatancy. Amer. J. Math. 67, 350–362 (1945). · Zbl 0063.06464
[2] Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids I. Proc. Roy. Soc., London, Ser. A 193, 260–281 (1948). · Zbl 0031.43001
[3] Rivlin, R. S.: The hydrodynamics of non-Newtonian fluids II. Proc. Cambridge Phil. Soc. 45, 88–91 (1949). · Zbl 0032.31903
[4] Truesdell, C.: A new definition of a fluid I. The Stokesian fluid. J. Math. Pures Appl. 29, 215–244 (1950). · Zbl 0038.38004
[5] Truesdell, C.: A new definition of a fluid II. The Maxwellian fluid. J. Math. Pures Appl. 30, 111–158 (1951). · Zbl 0043.39603
[6] Serrin, J.: The derivation of stress-strain relations for a Stokesian fluid. J. Math. and Mech. 8, 459–470 (1959). · Zbl 0089.18601
[7] Serrin, J.: Poiseuille and Couette flow of non-Newtonian fluids. Z. Angew. Math. and Mech. 39, 295–299 (1959). · Zbl 0086.39401
[8] Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Rational Mech. Anal. 2, 197–226 (1958). · Zbl 0083.39303
[9] Coleman, B. D., & W. Noll: On certain steady flows of general fluids. Arch. Rational Mech. Anal. 3, 289–303 (1959). · Zbl 0087.19402
[10] Coleman, B. D., & W. Noll: An approximation theorem for functionals with application in continuum mechanics. Arch. Rational Mech. Anal. 6, 355–370 (1960). · Zbl 0097.16403
[11] Rivlin, R. S., & J. L. Ericksen: Stress-deformation relations for isotropic materials. J. Rational Mech. Anal. 4, 323–425 (1955). · Zbl 0064.42004
[12] Truesdell, C., & R. Toupin: The classical field theories. Handbuch der Physik, Bd. III/1, pp. 543–545. Berlin-Göttingen-Heidelberg: Springer 1960.
[13] Courant, R., & D. Hilbert: Methods of Mathematical Physics, Vol. 2, pp. 535–550, Vol. 1, pp. 351–362. New York: Interscience 1962. · Zbl 0099.29504
[14] Gray, A., & B. Mathews: A Treatise on Bessel Functions and their Applications to Physics, Chap. V. VII, pp. XIII-XIV. London: Macmillan 1931.
[15] Hobson, W.: The Theory of Functions of a Real Variable and the Theory of Fourier’s Series, Vol. 1, pp. 425–426. New York: Dover 1957.
[16] Lamb, H.: Hydrodynamics, pp. 592–593. New York: Dover 1945.
[17] Dryden, H. L., F. D. Murnaghan & H. Bateman: Hydrodynamics, p. 196. New York: Dover 1956.
[18] Lamb, H. A.: A paradox in fluid motion, Aeronautical Research Comm., R. & M., No. 1084 (Ae 263); Annual Report, London, 1926–1927, pp. 78–81.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.