×

zbMATH — the first resource for mathematics

Isolated singularities of solutions of second order parabolic equations. (English) Zbl 0143.13705

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aronson, D. G., On the Green’s function for second order parabolic differential equations with discontinuous coefficients. Bulletin of the American Mathematical Society 69, 841–847 (1963) (Research Announcement; pre-prints of full text available). · Zbl 0154.11903 · doi:10.1090/S0002-9904-1963-11059-9
[2] Aronson, D. G., Uniqueness of positive weak solutions of second order parabolic equations. Annales Polonici Mathematici 16 (1965) (in press). · Zbl 0137.29403
[3] Bôcher, M., Singular points of functions which satisfy partial differential equations of elliptic type. Bulletin of the American Mathematical Society 9, 455–465 (1903). · JFM 35.0356.03 · doi:10.1090/S0002-9904-1903-01017-9
[4] Èidel’man, S. D., Behavior of solutions of the heat equation in the neighborhood of an isolated singular point. Uspehi Mathematičeskih Nauk 11, No. 3, 207–210 (1956) [Russian].
[5] Èidel’man, S. D., The behavior of the solutions of a parabolic system in the neighborhood of an isolated singular point. Doklady Akademii Nauk S.S.S.R. 125, 743–745 (1959) [Russian].
[6] Gilbarg, D., & James Serrin, On isolated singularities of solutions of second order elliptic differential equations. Journal d’Analyse Mathématique 4, 309–340 (1956). · Zbl 0071.09701 · doi:10.1007/BF02787726
[7] Il’in, A. M., A. S. Kalashnikov, & O. A. Oleinik, Second order linear equations of parabolic type. Russian Mathematical Surveys 17, No. 3, 1–143 (1962). · Zbl 0108.28401 · doi:10.1070/RM1962v017n03ABEH004115
[8] Krzy\.zański, M., Sur la solution élémentaire de l’équation de la chaleur. Atti dell’ Accad. Nazion. dei Lincei, cl. sc. fis., mat. e natur., ser. VII 8, 193–199 (1950); 13, 24–25 (1952).
[9] Krzy\.zański, M., Sur les solutions non négatives de l’équation linéaire normale parabolique. Revue Roumaine de Mathématiques Pures et Appliquées 9, 393–408 (1964).
[10] Serrin, James, Local behavior of solutions of quasi-linear equations. Acta Mathematica 111, 247–302 (1964). · Zbl 0128.09101 · doi:10.1007/BF02391014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.