×

zbMATH — the first resource for mathematics

Decomposing pairs of modules. (English) Zbl 0145.04403

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466 – 488. · Zbl 0094.02201
[2] N. Bourbaki, Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtra- tions et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles, No. 1293, Hermann, Paris, 1961 (French). · Zbl 0547.13001
[3] -, Algèbre commutative, Chapters III, IV, Hermann, Paris, 1961.
[4] -, Algèbre, Chapter 8, Hermann, Paris, 1958.
[5] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305
[6] Stephen U. Chase, Direct products of modules, Trans. Amer. Math. Soc. 97 (1960), 457 – 473. · Zbl 0100.26602
[7] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. · Zbl 0131.25601
[8] Irving Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72 (1952), 327 – 340. · Zbl 0046.25701
[9] Irving Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464 – 491. · Zbl 0036.01903
[10] Kiiti Morita and Hiroyuki Tachikawa, Character modules, submodules of a free module, and quasi-Frobenius rings, Math. Z. 65 (1956), 414 – 428. · Zbl 0075.24301
[11] Ichiro Murase, On the structure of generalized uniserial rings. II, Sci. Papers College Gen. Ed. Univ. Tokyo 13 (1963), 131 – 158. · Zbl 0122.28701
[12] Tadasi Nakayama, Note on uni-serial and generalized uni-serial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285 – 289. · Zbl 0024.09904
[13] Tadasi Nakayama, On Frobeniusean algebras. II, Ann. of Math. (2) 42 (1941), 1 – 21. · Zbl 0026.05801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.