×

zbMATH — the first resource for mathematics

Volterra integral equations in Banach space. (English) Zbl 0147.12302

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Shmuel Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962), 119 – 147. · Zbl 0109.32701 · doi:10.1002/cpa.3160150203 · doi.org
[2] N. Dunford and J. Schwartz, Linear operators, Part I, Interscience, New York, 1964. · Zbl 0128.34803
[3] Avner Friedman, On integral equations of Volterra type, J. Analyse Math. 11 (1963), 381 – 413. · Zbl 0134.31502 · doi:10.1007/BF02789991 · doi.org
[4] Avner Friedman, Uniqueness of solutions of ordinary differential inequalities in Hilbert space, Arch. Rational Mech. anal. 17 (1964), 353 – 357. · Zbl 0143.16701 · doi:10.1007/BF00250471 · doi.org
[5] Avner Friedman, Periodic behavior of solutions of Volterra integral equations, J. Analyse Math. 15 (1965), 287 – 303. · Zbl 0139.29303 · doi:10.1007/BF02787698 · doi.org
[6] Avner Friedman, Differentiability of solutions of ordinary differential equations in Hilbert space, Pacific J. Math. 16 (1966), 267 – 271. · Zbl 0151.20303
[7] V. P. Gluško and S. G. Kreĭn, Fractional powers of differential operators and imbedding theorems., Dokl. Akad. Nauk SSSR 122 (1958), 963 – 966 (Russian). · Zbl 0089.32503
[8] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. · Zbl 0078.10004
[9] Tosio Kato, Integration of the equation of evolution in a Banach space, J. Math. Soc. Japan 5 (1953), 208 – 234. · Zbl 0052.12601 · doi:10.2969/jmsj/00520208 · doi.org
[10] Tosio Kato, On linear differential equations in Banach spaces, Comm. Pure Appl. Math. 9 (1956), 479 – 486. · Zbl 0070.34602 · doi:10.1002/cpa.3160090319 · doi.org
[11] Tosio Kato, Fractional powers of dissipative operators, J. Math. Soc. Japan 13 (1961), 246 – 274. · Zbl 0113.10005 · doi:10.2969/jmsj/01330246 · doi.org
[12] Hikosaburo Komatsu, Abstract analyticity in time and unique continuation property of solutions of a parabolic equation, J. Fac. Sci. Univ. Tokyo Sect. I 9 (1961), 1 – 11 (1961). · Zbl 0100.12101
[13] R. S. Phillips, Perturbation theory for semi-groups of linear operators, Trans. Amer. Math. Soc. 74 (1953), 199 – 221. · Zbl 0053.08704
[14] Marvin Shinbrot and Shmuel Kaniel, The initial value problem for the Navier-Stokes equations, Arch. Rational Mech. Anal. 21 (1966), 270 – 285. · Zbl 0148.45504 · doi:10.1007/BF00282248 · doi.org
[15] P. E. Sobolevskiĭ, On equations of parabolic type in a Banach space, Trudy Moscov. Mat. Obšč. 10 (1961), 297-350=Amer. Math. Soc. Transl. (2) 49 (1965), 1-62.
[16] Hiroki Tanabe, A class of the equations of evolution in a Banach space, Osaka Math. J. 11 (1959), 121 – 145. · Zbl 0098.31201
[17] Hiroki Tanabe, Remarks on the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 145 – 166. · Zbl 0098.31202
[18] Hiroki Tanabe, On the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 363 – 376. · Zbl 0098.31301
[19] E. C. Titchmarsh, Fourier integrals, Oxford Univ. Press, Oxford, 1950.
[20] Kôsaku Yosida, Fractional powers of infinitesimal generators and the analyticity of the semi-groups generated by them, Proc. Japan Acad. 36 (1960), 86 – 89. · Zbl 0097.31801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.