zbMATH — the first resource for mathematics

Spiegelungsräume und homogene symmetrische Räume. (German) Zbl 0148.17403

Full Text: DOI EuDML
[1] Braun, H., u.M. Koecher: Jordan-Algebren. Berlin-Heidelberg-New York: Springer 1966.
[2] Bruck, R. H.: A survey of binary systems. Erg. Math. Berlin-Göttingen-Heidelberg: Springer 1958. · Zbl 0081.01704
[3] Helgason, S.: Differential geometry and symmetric spaces. New York-London: Academic Press 1962. · Zbl 0111.18101
[4] Kobayashi, S., andK. Nomizu: Foundations of differential geometry I. New York and London: Interscience Publ. 1963. · Zbl 0119.37502
[5] Koecher, M.: Jordan Algebras and their applications. University of Minnesota Lecture notes, Minneapolis 1962. · Zbl 0128.03101
[6] Koh, S. S.: On affine symmetric spaces. Trans. Am. Math. Soc.119, No. 2, 291-309 (1965). · Zbl 0139.39502
[7] Nijenhuis, A.: Jacobi-type identities for bilinear differential concomitants of certain tensor fields. I. Nederl. Akad. Wtensch. Proc. Ser. A,58 (3), 390-403 (1955). · Zbl 0068.15001
[8] Palais, R. S.: A global formulation of the Lie theory of transformation groups. Memoirs Am. Math. Soc. No. 22 (1957). · Zbl 0178.26502
[9] Pohl, W. F.: Differential geometry of higher order. Topology1, 169-211 (1962). · Zbl 0112.36605
[10] Willmore, T. J.: Connexions associated with foliated structures. Ann. Inst. Fourier, Grenoble14 (1), 43-48 (1964). · Zbl 0123.38803
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.