×

zbMATH — the first resource for mathematics

Convergence theorems for sequences of nonlinear operators in Banach spaces. (English) Zbl 0149.36301

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Aggeri, J.C., andC. Lescarret: Sur une application de la sous-differentiabilité à des fonctions convexes duales associés à un couple d’ensembles mutuellement polaires. Mimeographed, Montpellier 1965. · Zbl 0138.37503
[2] Asplund, E.: Positivity of duality mappings (to appear in Bull. Amer. Math. Soc.). · Zbl 0149.36202
[3] Babuska, I.: On Schwarz algorithms in partial differential equations of mathematical physics [Russian]. Czechoslovak Math. Jour. 8 (83), 328-343 (1958).
[4] Beurling, A., andA.E. Livingston: A theorem on duality mappings in Banach spaces. Ark. Math.4, 405-411 (1961). · Zbl 0105.09301
[5] Browder, F.E.: On some approximation methods for solutions of the Dirichlet problem for linear elliptic equations of arbitrary order. Jour. Math. Mech.7, 69-80 (1958). · Zbl 0108.10003
[6] ? Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc.69, 862-874 (1963). · Zbl 0127.31901
[7] ? On a theorem of Beurling and Livingston. Canad. Jour. Math.17, 367-372 (1965). · Zbl 0132.10602
[8] ? Nonlinear monotone operators and convex sets in Banach spaces. Bull. Amer. Math. Soc.71, 780-785 (1965). · Zbl 0138.39902
[9] ? Existence of periodic solutions for nonlinear equations of evolution in Hilbert space. Proc. Nat. Acad. Sci. U.S.A.53, 1100-1103 (1965). · Zbl 0135.17601
[10] ? Fixed point theorems for noncompact mappings in Hilbert space. Proc. Nat. Acad. Sci. U.S.A.53, 1272-1276 (1965). · Zbl 0125.35801
[11] ? Mapping theorems for noncompact nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A.54, 337-342 (1965). · Zbl 0133.08101
[12] ? Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. U.S.A.54, 1041-1044 (1965). · Zbl 0128.35801
[13] ? Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. Archive for Rat. Mech. and Anal.21, 259-269 (1966). · Zbl 0144.39101
[14] Browder, F.E.: Problèmes nonlinéaires, 153 pp. University of Montreal Press 1966.
[15] ? On the unification of the calculus of variations and the theory of monotone nonlinear operators in Banach spaces. Proc. Nat. Acad. Sci. U.S.A.56, 419-425 (1966). · Zbl 0143.36902
[16] ? Existence and approximation of solutions of nonlinear variational inequalities. Proc. Nat. Acad. Sci. U.S.A.56, 1080-1086 (1966). · Zbl 0148.13502
[17] Browder, F.E.: Convergence of approximants to fixed points of non-expansive nonlinear mappings in Banach spaces (to appear in Archive Rat. Mech. and Anal.).
[18] Browder, F.E.: Periodic solutions on nonlinear equations of evolution in infinite dimensional spaces (to appear in Lectures on Differential Equations, to be published by Van Nostrand Co. 1967). · Zbl 0176.45301
[19] Browder, F.E.: Nonlinear equations of evolution and the method of steepest descent in Banach spaces (to appear).
[20] Browder, F.E.: Nonlinear accretive operators in Banach spaces (to appear in Bull. Amer. Math. Soc.). · Zbl 0159.19905
[21] ?, andD.G. de Figueiredo:J-monotone nonlinear operators in Banach spaces. Konk. Nederl. Akad. Wetesch.69, 412-420 (1966). · Zbl 0148.13602
[22] ?, andW.V. Petryshyn: The solution by iteration of non-linear functional equations in Banach spaces. Bull. Amer. Math. Soc.72, 571-575 (1966). · Zbl 0138.08202
[23] Browder, F.E., andW.V. Petryshyn: Construction of fixed points of nonlinear mappings in Hilbert space (to appear in Jour. Math. Analysis and Appl.).
[24] Göhde, D.: Zum Prinzip der kontraktiven Abbildung. Math. Nachr.30, 251-258 (1966). · Zbl 0127.08005
[25] Hartman, P., andG. Stampacchia: On some non-linear elliptic differential-functional equations. Acta Math.115, 271-310 (1966). · Zbl 0142.38102
[26] Hildebrandt, S.: Einige konstruktive Methoden bei Randwertaufgaben für lineare partielle Differentialgleichungen und in der Theorie harmonischer Differentialformen. I. Jour. Reine Angew. Math.213, 66-88 (1963). · Zbl 0116.30002
[27] Kirk, W.A.: A fixed point theorem for mappings which do not increase distance. Amer. Math. Monthly72, 1004-1006 (1965). · Zbl 0141.32402
[28] Krasnoselski, M.A.: Two remarks about the method of successive approximations. Uspekhi Mat. Nauk.19, 123-127 (1955).
[29] Lions, J.L., andG. Stampacchia: Inequations variationelles non-coercives. C. R. Acad. Sci. Paris261 25-27 (1965). · Zbl 0136.11906
[30] Lions, J.L., andG. Stampacchia: Variational inequalities (to appear).
[31] ?, andR. Temam: Une methode d’eclatement des operateurs et des contraintes en calcul des variations. C. R. Acad. Sci. Paris263, 563-565 (1966). · Zbl 0147.12502
[32] Minty, G.J.: On a monotonicity method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci. U.S.A.50, 1038-1041 (1963). · Zbl 0124.07303
[33] Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive mappings (to appear in Bull. Amer. Math. Soc.). · Zbl 0179.19902
[34] Petryshyn, W.V.: Construction of fixed points of demicompact mappings in Hilbert space. Jour. Math. Analysis and Appl.14, 276-284 (1966). · Zbl 0138.39802
[35] Schaefer, H.: Über die Methode sukzessiver Approximationen. J. Deutsch. Math. Verein.59, 131-140 (1957). · Zbl 0077.11002
[36] Stampacchia, G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris258, 4413-4416 (1964). · Zbl 0124.06401
[37] Stummel, F.: Zur Konvergenz des Balayage-Verfahrens in Hilbertschen Räumen. Math. Ztschr.86, 136-144 (1964). · Zbl 0127.06703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.