×

zbMATH — the first resource for mathematics

Unitary and non-unitary representations of the complex inhomogeneous Lorentz group. (English) Zbl 0152.23101

MSC:
22E43 Structure and representation of the Lorentz group
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fell, J. M. G.: Non-unitary dual spaces of groups. Acta Math.114, 267 (1965). · Zbl 0152.33204 · doi:10.1007/BF02391824
[2] Gel’fand, I. M., M. I. Graev, andN. Ya. Vilenkin: Generalized functions, Vol. V. New York: Academic Press 1966. (English Translation).
[3] Joos, H.: Complex angular momentum and the representations of the Poincaré group with space-like momentum. Lectures in Theoretical Physics VII-A. Boulder: University of Colorado Press 1964.
[4] Mackey, G. W.: The theory of group representations. Lecture Notes, University of Chicago (1955).
[5] —- Infinite dimensional group representations. Bull. Am. Math. Soc.69, 628 (1963). · Zbl 0136.11502 · doi:10.1090/S0002-9904-1963-10973-8
[6] Mayer, M. E.: Representations of noncompact (locally compact) groups on rigged Hilbert spaces and their possible uses. Feldafing Seminar on Unified Theories of Elementary Particles, Proceedings, Max-Planck-Institut für Physik und Astrophysik, Munich (1965).
[7] Moussa, P., andR. Stora: Some remarks on the product of irreducible representations of the inhomogeneous Lorentz group. Lectures in Theoretical Physics VII-A. Boulder: University of Colorado Press 1964.
[8] Naimark, M. A.: Linear representations of the Lorentz group. New York: Macmillan 1964. (English Translation). · Zbl 0137.31703
[9] Roffman, E. H.: The complex inhomogeneous Lorentz group and complex angular momentum. Thesis submitted in Partial Fulfillment of the Degree Doctor of Philosophy, Brandeis University (1965).
[10] —- The complex inhomogeneous Lorentz group and complex angular momentum. Phys. Rev. Letters16, 210 (1966). · doi:10.1103/PhysRevLett.16.210
[11] Sertorio, L., andM. Toller: Complex angular momentum and the three dimensional Lorentz group. Nuovo Cimento37, 631 (1965). · doi:10.1007/BF02749860
[12] Ström, S.: On the matrix elements of a unitary representation of the homogeneous Lorentz group. Arkiv Fysik29, 467 (1965). · Zbl 0138.38401
[13] –Ström, S. A note on the matrix elements of a unitary representation of the homogeneous Lorentz group. Preprint, Chalmers University of Technology, Göteborg, Sweden.
[14] Toller, M.: Three dimensional Lorentz group and harmonic analysis of the scattering amplitude. Nuovo Cimento37, 631 (1965). · doi:10.1007/BF02749860
[15] – Some consequences of a generalization of the Regge pole hypothesis. Preprint, Istituto di Fisica ”G. Marconi”, Universita di Roma.
[16] Wigner, E. P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math.40, 149 (1939). · JFM 65.1129.01 · doi:10.2307/1968551
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.