×

zbMATH — the first resource for mathematics

Bounds for the fundamental solution of a parabolic equation. (English) Zbl 0153.42002

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. G. Aronson, Isolated singularities of solutions of second order parabolic equations, Arch. Rational Mech. Anal. 19 (1965), 231 – 238. · Zbl 0143.13705 · doi:10.1007/BF00277011 · doi.org
[2] D. G. Aronson and James Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal. 25 (1967), 81 – 122. · Zbl 0154.12001 · doi:10.1007/BF00281291 · doi.org
[3] P. Besala, On a certain property of the fundamental solution of a linear parabolic equation the last coefficient of which is unbounded, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 155 – 158. · Zbl 0117.31402
[4] A. M. Il\(^{\prime}\)in, A. S. Kalašnikov, and O. A. Oleĭnik, Second-order linear equations of parabolic type, Uspehi Mat. Nauk 17 (1962), no. 3 (105), 3 – 146 (Russian).
[5] Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. · Zbl 0092.31002
[6] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931 – 954. · Zbl 0096.06902 · doi:10.2307/2372841 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.