×

zbMATH — the first resource for mathematics

On the extension of Lipschitz maps. (English) Zbl 0153.45601

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aronszajn, N., andPanitchpakdi, P., Extensions of uniformly continuous transformations and hyperconvex metric spaces,Pacific J. Math. 6, 405–39 (1956). · Zbl 0074.17802
[2] Danzer, L., Grünbaum, B., andKlee, V., Helly’s theorem and its relatives,Amer. Math. Soc. Proc. Symp. Pure Math., Vol. 7, Convexity 101–77 (1963). · Zbl 0132.17401
[3] Day, M. M., Polygons circumscribed about closed convex curves,Trans. Amer. Math. Soc. 62, 315–19 (1947). · Zbl 0034.25301 · doi:10.1090/S0002-9947-1947-0022686-9
[4] Day, M. M., Some characterizations of inner-product spaces,Trans. Amer. Soc. 62, 320–37 (1947). · Zbl 0034.21703 · doi:10.1090/S0002-9947-1947-0022312-9
[5] Goodner, D. B., Projections in normed linear spaces,Trans. Amer. Soc. 69, 89–108 (1950). · Zbl 0041.23203
[6] Grünbaum, B., On a theorem of Kirszbraun,Bull. Res. Council Israel, Sect. F 7, 129–32 (1958). · Zbl 0088.08701
[7] Hanner, O., Intersections of translates of convex bodies,Math. Scand. 4, 65–87 (1956). · Zbl 0070.39302
[8] Kelley, J. L., General topology, Van Nostrand, New York, 1955.
[9] Kelley, J. L., Banach spaces with the extension property,Trans. Amer. Math. Soc. 72, 323–6 (1952). · Zbl 0046.12002 · doi:10.1090/S0002-9947-1952-0045940-5
[10] Klee, V., Infinite-dimensional intersection theorems,Amer. Math. Soc. Proc. Symp. Pure Math., Vol. 7, Convexity, 349–60 (1963). · Zbl 0136.18804
[11] Lindenstrauss, J., Extension of compact operators,Memoirs Amer. Math. Soc., no. 48, 1964. · Zbl 0141.12001
[12] Nachbin, L., A theorem of the Hahn–Banach type for linear transformations,Trans. Amer. Math. Soc. 68, 28–46 (1950). · Zbl 0035.35402 · doi:10.1090/S0002-9947-1950-0032932-3
[13] Schönbeck, S. O., Extension of nonlinear contractions,Bull. Amer. Math. Soc. 72, 99–101 (1966). · Zbl 0135.17603 · doi:10.1090/S0002-9904-1966-11436-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.