Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. (English) Zbl 0159.20904

Full Text: DOI EuDML


[1] Ahlin, A. C.: A bivariate generalization of Hermite’s interpolation formula. Math. Comp.18, 264–273 (1964). · Zbl 0122.12501
[2] Beckenbach, E., andR. Bellman: Inequalities. Berlin-Göttingen-Heidelberg: Springer 1961.
[3] Birkhoff, G., andC. de Boor: Piecewise polynomial interpolation and approximation. Approximation of functions.H. L. Garabedian, ed. New York: Elsevier 1965. · Zbl 0136.04703
[4] –, andA. Priver: Hermite interpolation errors for derivatives. J. Math. and Phys. (to appear).
[5] Bramble, J. H., andB. E. Hubbard: On the formulation of finite difference analogs of the Dirichlet problem for Poisson’s equation. Numer. Math.4, 313–327 (1962). · Zbl 0135.18102
[6] Céa, Jean: Approximation variationnelle des problemès aux limites. Ann. Inst. Fourier (Grenoble).14, 345–444 (1964). · Zbl 0127.08003
[7] Ciarlet, P. G., M. H. Schultz, andR. S. Varga: Numerical methods of highorder accuracy for nonlinear boundary value problems. I. One dimensional problem. Numer. Math.9, 394–430 (1967). · Zbl 0155.20403
[8] Collatz, L.: The numerical treatment of differential equations. Third edition, pp. 348 ff. Berlin-Göttingen-Heidelberg: Springer 1959 · Zbl 0085.11201
[9] Davis, Philip J.: Interpolation and approximation. New York: Blaisdell Publishing Co. 1963. · Zbl 0111.06003
[10] Herbold, R. J.: Consistent quadrature schemes for the numerical solution of boundary value problems by variational techniques. Doctoral Thesis. Case Western Reserve University. 1967.
[11] Kellogg, R. B.: Difference equations on a mesh arising from a general triangulation. Math. Comp.18, 203–210 (1964). · Zbl 0119.12403
[12] —- An error estimate for elliptic difference equations on a convex polygon. SIAM J. Numer. Anal.3, 79–90 (1966). · Zbl 0143.17602
[13] Nitsche, Joachim, andJohannes C. C. Nitsche: Error estimates for the numerical solution of elliptic differential equations. Arch. Rational Mech. Anal.5, 293–306 (1960). · Zbl 0097.33103
[14] Peano, G.: Resto nelle formule di quadratura expresso con un integrale definito. Atti Accad. Naz. Lincei Rend.22, 562–569 (1913). · JFM 44.0358.02
[15] Petryshyn, W. V.: Direct and iterative methods for the solution of linear operator equations in Hilbert space. Trans. Amer. Math. Soc.105, 136–175 (1962). · Zbl 0106.09301
[16] Polsky, N. I.: Projection methods in applied mathematics. Dokl. Akad. Nauk SSSR.143, 787–790 (1962).
[17] Pólya, G.: Sur une interprétation de la méthode des différence finies qui peut fournir des bornes supérieures ou inférieures. C. R. Acad. Sci. Paris.235, 995–997 (1952). · Zbl 0047.36603
[18] Sard, Arthur: Linear approximation. Mathematical Survey 9. Providence, Rhode Island: American Mathematical Society 1963. · Zbl 0115.05403
[19] Schultz, M. H., andR. S. Varga:L-splines. Numer. Math.10, 345–369 (1967). · Zbl 0183.44402
[20] Simonsen, W.: On numerical differentiation of functions of several variables. Skand. Aktuarietidskr.42, 73–89 (1959). · Zbl 0089.33101
[21] Stancu, D. D.: L’expression du reste dans quelques formules de dérivation partielle numérique. Acad. R. P. Romîne Fil. Cluj Stud. Cerc. Mat.11, 371–380 (1960). · Zbl 0156.17201
[22] —- The remainder of certain linear approximation formulas in two variables. SIAM J. Numer. Anal. Ser. B.1, 137–163 (1964). · Zbl 0143.07901
[23] Synge, J. L.: The hypercircle in mathematical physics, pp. 168 ff. London: Cambridge Univ. Press 1957. · Zbl 0079.13802
[24] Varga, R. S.: Hermite interpolation-type Ritz methods for two-point boundary value problems. Numerical solution of partial differential equations. (365–373). New York: Academic Press 1966.
[25] Weinberger, H. F.: Upper and lower bounds for eigenvalues by finite difference methods. Comm. Pure Appl. Math.9, 613–623 (1956). · Zbl 0070.35203
[26] Yosida, K.: Functional analysis. (458 pp.) New York: Academic Press 1965. · Zbl 0126.11504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.