×

Strongly regular graphs with (-1, 1, 0) adjacency matrix having eigenvalue 3. (English) Zbl 0159.25403


Keywords:

topology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bose, R.C., Strongly regular graphs, partial geometries and partially balanced designs, Pacific J. math., 13, 389-419, (1963) · Zbl 0118.33903
[2] Chang, L.C., The uniqueness and nonuniqueness of the triangular association scheme, Sci. record, 3, 604-613, (1959) · Zbl 0089.15102
[3] Chang, L.C., Association schemes of partially balanced block designs with parameters v = 28, n1 = 12, n2 = 15 and p112 = 4, Sci. record, 4, 12-18, (1960)
[4] Coxeter, H.S.M., Regular polytopes, (1963), Macmillan New York · Zbl 0118.35902
[5] Coxeter, H.S.M., Self-dual configurations and regular graphs, Bull. amer. math. soc., 56, 413-455, (1950) · Zbl 0040.22803
[6] Gewirtz, A., Graphs with maximal even girth, () · Zbl 0181.51801
[7] Goethals, J.M.; Seidel, J.J., Orthogonal matrices with zero diagonal, Canad. J. math., 19, 1001-1010, (1967) · Zbl 0155.35601
[8] Hoffman, A.J., On the uniqueness of the triangular association scheme, Ann. math. statist., 31, 492-497, (1960) · Zbl 0091.31504
[9] Hoffman, A.J., The eigenvalues of the adjacency matrix of a graph, () · Zbl 0203.56702
[10] Hoffman, A.J.; Ray-Chaudhuri, D.K., On the line graph of a symmetric balanced incomplete block design, Trans. amer. math. soc., 116, 238-252, (1965) · Zbl 0144.23303
[11] van Lint, J.H.; Seidel, J.J., Equilateral point sets in elliptic geometry, Koninkl. akad. watenschap. proc. ser. A., 69, 335-348, (1966) · Zbl 0138.41702
[12] Seidel, J.J., Strongly regular graphs of L2-type and of triangular type, Koninkl. ned. akad. wetenschap. amst. proc. ser. A., 70, 188-196, (1967) · Zbl 0161.20802
[13] Shrikhande, S.S., The uniqueness of the L2 association scheme, Ann. math. statist., 30, 781-798, (1959) · Zbl 0086.34802
[14] Clebsch, A., Ueber die flächen vierter ordnung, welche eine doppelcurve zweiten grades besitzen, J. für math., 69, 142-184, (1868) · JFM 01.0258.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.