Some properties of the balayage of measures on a harmonic space. (English) Zbl 0159.40804

Full Text: DOI Numdam EuDML


[1] H. BAUER, Harmonische Räume und ihre potentialtheorie, Springer Verlag, Berlin-Heidelberg, New York (1966), 175 pages. · Zbl 0142.38402
[2] N. BOBOC, C. CONSTANTINESCU, A. CORNEA, Axiomatic theory of harmonic functions, Balayage, Ann. Inst. Fourier (1965), 15, 2, 37-70. · Zbl 0138.36603
[3] M. BRELOT, Lectures on potential theory. Tata Institute of Fundamental Research, Bombay (1960). · Zbl 0098.06903
[4] M. BRELOT, Quelques propriétés et applications nouvelles de l’effilement. Sém. Théorie du Potentiel (1962), 6, 1c, 14 pages. · Zbl 0115.32203
[5] J. L. DOOB, Applications to analysis of a topological definition of smallness of a set. Bull. Amer. Math. Soc. (1966), 72, 579-600. · Zbl 0142.09001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.