×

zbMATH — the first resource for mathematics

Approximation-solvability of nonlinear functional equations in normed linear spaces. (English) Zbl 0166.12603

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Browder, F.E., Variational boundary value problems for quasi-linear elliptic equations, II. Proc. Nat. Acad. Sci. U.S.A. 50, 592–598 (1963). · Zbl 0121.08301 · doi:10.1073/pnas.50.4.592
[2] Browder, F.E., Nonlinear elliptic boundary value problems. Bull. Amer. Math. Soc. 69, 862–874 (1963). · Zbl 0127.31901 · doi:10.1090/S0002-9904-1963-11068-X
[3] Browder, F.E., Remarks on nonlinear functional equations. Proc. Nat. Acad. Sci. U.S.A. 51, 985–989 (1964). · Zbl 0126.12301 · doi:10.1073/pnas.51.6.985
[4] Browder, F.E., Remarks on nonlinear functional equations, II. Illinois Jour. Math. 9, 608–616 (1965). · Zbl 0131.13501
[5] Browder, F.E., Remarks on nonlinear functional equations, III. Illinois Jour. Math. 9, 617–622 (1965). · Zbl 0131.13501
[6] Browder, F.E., Further remarks on nonlinear functional equations. Illinois Jour. Math. 10, 275–286 (1966). · Zbl 0148.13501
[7] Browder, F.E., Existence and uniqueness theorems for solutions of nonlinear boundary value problems. Proc. Amer. Math. Soc. Symposium on Nonlinear Partial Diff. Equs. and App. to Math. Physics, Symposia on App. Math. 17, 24–49 (1965).
[8] Browder, F.E., Fixed point theorems for nonlinear semicontractive mappings in Banach spaces. Arch. Rational Mech. Anal. 21, 259–269 (1965). · Zbl 0144.39101 · doi:10.1007/BF00282247
[9] Browder, F.E., Problèmes nonlinéaires. University of Montreal Press 1966, 156 pp.
[10] Browder, F.E., Convergence of approximants to fixed points of non-expansive nonlinear mappings in Banach spaces. Arch. Rational Mech. Anal. 23 (1967). · Zbl 0148.13601
[11] Browder, F.E., Nonlinear equations of evolution and the method of steepest descent in Banach spaces (to appear).
[12] Browder, F.E., Nonlinear accretive operators in Banach spaces. Bull. Amer. Math. Soc. 73, 470–476 (1967). · Zbl 0159.19905 · doi:10.1090/S0002-9904-1967-11786-5
[13] Browder, F.E., & D.G. de Figueiredo, J-monotone nonlinear operators in Banach spaces. Kon. Nederl. Akad. Wetesch. 69, 412–420 (1966). · Zbl 0148.13602 · doi:10.1016/S1385-7258(66)50048-8
[14] Browder, F. E., & W. V. Petryshyn, Construction of fixed points of non-linear mappings in Hilbert space (to appear in Jour. Math. Anal. and Appl.). · Zbl 0153.45701
[15] de Figueiredo, D.G., Fixed point theorems for nonlinear operators and Galerkin approximations. Jour. Diff. Equs. 3, 271–281 (1967). · Zbl 0149.10604 · doi:10.1016/0022-0396(67)90031-9
[16] Kaniel, S., Quasi-compact nonlinear operators in Banach space and applications. Arch. Rational Mech. Anal. 21, 259–278 (1966). · Zbl 0144.39101 · doi:10.1007/BF00282247
[17] Lees, M., & M.H. Schultz, A Leray-Schauder Principle for A-Compact Mappings and the Numerical Solution of Nonlinear Two-Point Boundary Value Problems. Numerical Solutions of Nonlinear Differential Equations, p. 167–179. New York: John Wiley & Sons, Inc. 1966.
[18] Minty, G.J., On a ”monotonicity” method for the solution of nonlinear equations in Banach spaces. Proc. Nat. Acad. Sci. U.S.A. 50, 1038–1041 (1963). · Zbl 0124.07303 · doi:10.1073/pnas.50.6.1038
[19] Petryshyn, W.V., On the extension and the solution of nonlinear operator equations. Illinois Jour. Math. 10, 255–274 (1966). · Zbl 0139.31503
[20] Petryshyn, W.V., On a fixed point theorem for nonlinear P-compact operators in Banach space. Bull. Amer. Math. Soc. 72, 329–334 (1966). · Zbl 0142.11201 · doi:10.1090/S0002-9904-1966-11519-7
[21] Petryshyn, W.V., On nonlinear P-compact operators in Banach space with applications to constructive fixed point theorems. Jour. Math. Anal. Appl. 15, 228–242 (1966). · Zbl 0149.10602 · doi:10.1016/0022-247X(66)90114-4
[22] Petryshyn, W.V., Further remarks on nonlinear P-compact operators in Banach space. Proc. Nat. Acad. Sci. U.S.A. 55, 684–687 (1966). · Zbl 0142.11202 · doi:10.1073/pnas.55.4.684
[23] Petryshyn, W.V., Projection methods in nonlinear numerical functional analysis (to appear in Jour. Math. and Mech.). · Zbl 0162.20202
[24] Vainberg, M.M., On the convergence of the process of steepest descent for nonlinear equations. Sibirski Mat. Jour. 2, 201–220 (1961).
[25] Zarantonello, E., The closure of the numerical range contains the spectrum. Bull. Amer. Math. Soc. 70, 781–787 (1964). · Zbl 0137.32501 · doi:10.1090/S0002-9904-1964-11237-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.