×

zbMATH — the first resource for mathematics

On Serre duality and envelopes of holomorphy. (English) Zbl 0166.33903

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Bochner, Analytic and meromorphic continuation by means of Green’s formula, Ann. of Math. (2) 44 (1943), 652 – 673. · Zbl 0060.24206 · doi:10.2307/1969103 · doi.org
[2] Pierre Dolbeault, Formes différentielles et cohomologie sur une variété analytique complexe. I, Ann. of Math. (2) 64 (1956), 83 – 130 (French). · Zbl 0072.40603 · doi:10.2307/1969950 · doi.org
[3] A. Friedman, Cohomology with compact support for the analytic sheaf, (to appear).
[4] Roger Godement, Topologie algébrique et théorie des faisceaux, Actualit’es Sci. Ind. No. 1252. Publ. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). · Zbl 0080.16201
[5] Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. · Zbl 0141.08601
[6] Taqdir Husain, The open mapping and closed graph theorems in topological vector spaces, Clarendon Press, Oxford, 1965. · Zbl 0134.26801
[7] J. L. Kelley and Isaac Namioka, Linear topological spaces, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. · Zbl 0115.09902
[8] Henry B. Laufer, On sheaf cohomology and envelopes of holomorphy, Ann. of Math. (2) 84 (1966), 102 – 118. · Zbl 0143.30201 · doi:10.2307/1970533 · doi.org
[9] Saunders Mac Lane, Homology, Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. · Zbl 0818.18001
[10] Bernard Malgrange, Faisceaux sur des variétés analytiques réelles, Bull. Soc. Math. France 85 (1957), 231 – 237 (French). · Zbl 0079.39201
[11] Enzo Martinelli, Sulle estensioni della formula integrale di Cauchy alle funzioni analitiche di più variabili complesse, Ann. Mat. Pura Appl. (4) 34 (1953), 277 – 347 (Italian). · Zbl 0053.05204 · doi:10.1007/BF02415334 · doi.org
[12] G. de Rham, Variétés différentiables, Hermann, Paris, 1960. · Zbl 0089.08105
[13] Alex P. Robertson and Wendy Robertson, On the closed graph theorem, Proc. Glasgow Math. Assoc. 3 (1956), 9 – 12. · Zbl 0073.08702
[14] L. Schwartz, Théorie des distributions, Hermann, Paris, 1957. · Zbl 0089.09601
[15] Jean-Pierre Serre, Un théorème de dualité, Comment. Math. Helv. 29 (1955), 9 – 26 (French). · Zbl 0067.16101 · doi:10.1007/BF02564268 · doi.org
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.