×

zbMATH — the first resource for mathematics

On Volterra integral equations with nonnegative integrable resolvents. (English) Zbl 0167.40901

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] \scR. K. Miller. On the linearization of Volterra integral equations. J. Math. Anal. Appl., to appear. · Zbl 0167.40902
[2] Paley, R.E.A.C; Wiener, N, Fourier transforms in the complex domain, (1934), American Mathematics Society Colloquium Publications · Zbl 0008.15203
[3] Nohel, J.A, Remarks on nonlinear Volterra equations, () · Zbl 0388.45013
[4] Friedman, A, On integral equations of Volterra type, J. anal. math., 11, 381-413, (1963) · Zbl 0134.31502
[5] Friedman, A, Periodic behavior of solutions of Volterra integral equations, J. anal. math., 15, 187-303, (1965) · Zbl 0139.29303
[6] Mann, W.R; Wolf, F, Heat transfer between solids and gasses under nonlinear boundary conditions, Quart. appl. math., 9, 163-184, (1951) · Zbl 0043.10001
[7] Mann, W.R; Roberts, J.H, On a certain nonlinear integral equation of the Volterra type, Pacific J. math., 1, 431-445, (1951) · Zbl 0044.32202
[8] Padmavally, K, On a non-linear integral equation, J. math. mech., 7, 533-555, (1958) · Zbl 0082.32201
[9] Levinson, N, A nonlinear Volterra equation arising in the theory of superfluidity, J. math. anal. appl., 1, 1-11, (1960) · Zbl 0094.08501
[10] Nohel, J.A, Some problems in nonlinear Volterra integral equations, Bull. A. M. S., 68, 323-329, (1962) · Zbl 0106.08303
[11] Dunford, N; Schwartz, J.T, Linear operators, (1958), Wiley (Interscience) New York, Part I
[12] Widder, D.V, The Laplace transform, (1941), Princeton Univ. Press Princeton, New Jersey · Zbl 0060.24801
[13] Miller, R.K, Asymptotic behavior of solutions of nonlinear Volterra equations, Bull. A. M. S., 72, 153-156, (1966) · Zbl 0141.11101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.