×

zbMATH — the first resource for mathematics

Variational problems of minimal surface type. II: Boundary value problems for the minimal surface equation. (English) Zbl 0171.08301

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Courant, R., & D. Hilbert, Methods of mathematical physics, vol. II. New York: Inter-science 1962.
[2] Finn, R., On equations of minimal surface type. Ann. of Math. 60, 397–416 (1954). · Zbl 0058.32501
[3] Finn, R., New estimates for equations of minimal surface type. Arch. Rational Mech. Analysis 14, 337–375 (1963). · Zbl 0133.04601
[4] Haar, A., Über das Plateausche Problem. Math. Ann. 97, 124–258 (1927). · JFM 52.0710.02
[5] Jenkins, H., On quasi-linear elliptic equations which arise from variational problems. J. Math. Mech. 10, 705–728 (1961). · Zbl 0145.36402
[6] Jenkins, H., & J. Serrin, Variational problems of minimal surface type, I. Arch. Rational Mech. Analysis 12, 185–212 (1963). · Zbl 0122.39602
[7] Nitsche, J.C.C., Über eine mit der Minimalflächengleichung zusammenhängende analytische Funktion und den Bernsteinschen Satz. Arch. Math. 7, 417–419 (1956). · Zbl 0079.37701
[8] Nitsche, J.C.C., Über ein verallgemeinertes Dirichletsches Problem für die Minimalflächengleichung und hebbare Unstetigkeiten ihrer Lösungen. Math. Ann. 158, 203–214 (1965). · Zbl 0141.09601
[9] Nitsche, J.C.C., On new results in the theory of minimal surfaces. Bull. Amer. Math. Soc. 71, 195–270 (1965). · Zbl 0135.21701
[10] Radó, T., The problem of least area and the problem of Plateau. Math. Z. 32, 763–796 (1930). · JFM 56.0436.01
[11] Radó, T., The Problem of Plateau. Berlin: Springer 1932. · JFM 59.1341.01
[12] Serrin, J., A priori estimates for solutions of the minimal surface equation. Arch. Rational Mech. Anal. 14, 376–383 (1963). · Zbl 0117.07304
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.