×

zbMATH — the first resource for mathematics

Convex and starlike univalent functions. (English) Zbl 0172.09703

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. D. Bernardi, A survey of the development of the theory of schlicht functions, Duke Math. J. 19 (1952), 263 – 287. · Zbl 0047.07903
[2] S. D. Bernardi, Special classes of subordinate functions, Duke Math. J. 33 (1966), 55 – 67. · Zbl 0193.37201
[3] Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169 – 185 (1953). · Zbl 0048.31101
[4] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965), 755 – 758. · Zbl 0158.07702
[5] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc. 17 (1966), 352 – 357. · Zbl 0158.07701
[6] G. Pólya and I. J. Schoenberg, Remarks on de la Vallée Poussin means and convex conformal maps of the circle, Pacific J. Math. 8 (1958), 295 – 334. · Zbl 0084.27901
[7] M. S. Robertson, Applications of the subordination principle to univalent functions, Pacific J. Math. 11 (1961), 315 – 324. · Zbl 0109.04902
[8] Erich Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), no. 1, 356 – 380 (German). · Zbl 0007.21402
[9] Ted J. Suffridge, Convolutions of convex functions, J. Math. Mech. 15 (1966), 795 – 804. · Zbl 0154.32802
[10] D. V. Widder, Laplace transforms, Princeton Univ. Press, Princeton, N. J., 1946.
[11] Herbert S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc. 12 (1961), 689 – 693. · Zbl 0100.07201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.