×

Banach spaces with a unique unconditional basis. (English) Zbl 0174.17201


PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Babienko, K. I., On conjugate functions, Dokl. Akad. Nauk. SSSR, 62, 157-160 (1948)
[2] Day, M. M., Normed Linear Spaces (1958), Springer Verlag: Springer Verlag Berlin · Zbl 0082.10603
[3] Dunford, N., Spectral operators, Pacific J. Math., 4, 321-354 (1954) · Zbl 0056.34601
[4] Gelfand, I. M., Remark on the work of N. K. Bari, “Biothogonal systems and bases in Hilbert spaces”, (Moscov, Gos. Univ. Uc. Zap. 148. Moscov, Gos. Univ. Uc. Zap. 148, Matematica, 4 (1951)), 224-225, (in Russian)
[5] Grothendieck, A., Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Matem. Sao Paulo, 8, 1-79 (1956) · Zbl 0074.32303
[6] Kadec, M. I.; Pełczyński, A., Bases, lacunary sequences and complemented subspaces in the spaces \(L_p\), Studia Math., 21, 161-176 (1962) · Zbl 0102.32202
[7] Lindenstrauss, J.; Pełczyński, A., Absolutely summing operators in \(L_p\) spaces and their applications, Studia Math., 29, 275-326 (1968) · Zbl 0183.40501
[8] Pełczyński, A., Projections in certain Banach spaces, Studia Math., 19, 209-228 (1960) · Zbl 0104.08503
[9] Pełczyński, A.; Singer, I., On non-equivalent bases and conditional bases in Banach spaces, Studia Math., 25, 5-25 (1964) · Zbl 0187.05403
[10] Singer, I., Some characterizations of symmetric bases in Banach spaces, Bull. Acad. Pol. Sci., 10, 185-192 (1962) · Zbl 0119.10005
[11] Wermer, J., Commuting spectral measures on Hilbert space, Pacific J. Math., 4, 355-361 (1954) · Zbl 0056.34701
[12] Zippin, M., On perfectly homogeneous bases in Banach spaces, Israel J. Math., 4, 265-272 (1966) · Zbl 0148.11202
[13] Zippin, M., On bases in Banach spaces, (Ph.D. Thesis (1968), Hebrew University of Jerusalem), [Hebrew with English summary] · Zbl 0148.11202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.