Ribaric, M.; Vidav, I. Analytic properties of the inverse \(A(z)^{-1}\) of an analytic linear operator valued function \(A(z)\). (English) Zbl 0174.18002 Arch. Ration. Mech. Anal. 32, 298-310 (1969). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 22 Documents Keywords:functional analysis PDF BibTeX XML Cite \textit{M. Ribaric} and \textit{I. Vidav}, Arch. Ration. Mech. Anal. 32, 298--310 (1969; Zbl 0174.18002) Full Text: DOI References: [1] Atkinson, F. V., A spectral problem for completely continuous operators. Acta Math. Acad. Sci. Hungar. 3, 53–60 (1952). · Zbl 0047.36001 · doi:10.1007/BF02146069 [2] Dunford, N., & J. T. Schwartz, Linear Operators, Part I. New York: Interscience 1958. · Zbl 0084.10402 [3] Gohberg, I. C., On linear operators depending analytically on a parameter. Doklady Akad. Nauk SSSR (N. S) 78, 629–632 (1951) [Russian]. · Zbl 0042.34604 [4] Kato, T., Perturbation Theory for Linear Operators. Berlin-Heidelberg-New York: Springer 1966. · Zbl 0148.12601 [5] Lehner, J., & G. M. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Commun. Pure Appl. Math. 8, 217–234 (1955). · Zbl 0064.23004 · doi:10.1002/cpa.3160080202 [6] Nikolsky, S., Linear equations in normed linear spaces. Bull. Acad. Sci. URSS, Ser. Math. 7, 147–166 (1943) [Russian]. · Zbl 0061.26305 [7] Riesz, F., & B. Sz.-Nagy, Functional Analysis. New York: Frederick Unger 1955. [8] Sattinger, D. H., The eigenvalues of an integral equation in anisotropic neutron transport theory. J. Math. Phys. 45, 188–196 (1966). · Zbl 0144.15601 [9] Sz.-Nagy, B., On a spectral problem of Atkinson. Acta Math. Acad. Sci. Hungar. 3, 61–66 (1952). · Zbl 0047.36002 · doi:10.1007/BF02146070 [10] Smul’yan, Yu. L., Completely continuous perturbation of operators. Dokl. Akad. Nauk SSSR 101, 35–38 (1955) [Russian]; Amer. Math. Soc. Transl. (2) 10, 341–343 (1958). [11] Tamarkin, J. D., On Fredholm’s integral equations, whose kernels are analytic in a parameter. Annals of Math. (2) 28, 127–152 (1927). · JFM 53.0351.01 · doi:10.2307/1968363 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.