×

zbMATH — the first resource for mathematics

Conformal mapping of doubly-connected domains. (English) Zbl 0174.20602

PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Gaier, D.: Konstruktive Methoden der konformen Abbildung. Springer Tracts in Natural Philosophy, Vol. 3. Berlin-Göttingen-Heidelberg-New York: Springer 1964. · Zbl 0132.36702
[2] Garrick, I. E.: Potential flow about arbitrary biplane wing sections. NACA Report 542, 1936. · JFM 62.1573.05
[3] Jaswon, M. A.: Integral equation methods in potential theory. I. Proc. Roy. Soc. A275, 23–32 (1963). · Zbl 0112.33103 · doi:10.1098/rspa.1963.0152
[4] Kantorovich, L. V., Krylov, V. I.: Approximate methods of higher analysis. Groningen: Noordhoff 1964. · Zbl 0083.35301
[5] Laura, P. A.: Conformal mapping of a class of doubly connected regions. NASA Tech. Rep. No. 8, The Catholic University of America, Washington, 1965
[6] Lewis, G. K.: Flow and load parameters of hydrostatic oil bearings for several port shapes. J. Mech. Eng. Sci.8, 173–184 (1966). · doi:10.1243/JMES_JOUR_1966_008_022_02
[7] Mikhlin, S. G.: Integral equations. London: Pergamon 1957. · Zbl 0077.09903
[8] Muskhelishvili, N. I.: Some basic problems of the mathematical theory of elasticity. Groningen: Noordhoff 1953. · Zbl 0052.41402
[9] Opfer, G.: Untere, beliebig verbesserbare Schranken für den Modul eines zweifach zusammenhängenden Gebietes mit Hilfe von Differenzenverfahren. Dissertation, Hamburg, 1967.
[10] Royden, H. L.: A modification of the Neumann-Poincaré method for multiply connected regions. Pacific J. Maths.2, 385–394 (1952). · Zbl 0047.07906
[11] Savin, G. N.: Stress concentration around holes. London: Pergamon 1961. · Zbl 0124.18303
[12] Sugiyama, H., Joh, K.: A numerical procedure of conformal mapping in case of simply, doubly and multiply connected domains from the viewpoint of Monte Carlo approach (I). Tech. Rep. Osaka Univ.12, No. 488 (1962).
[13] Symm, G. T.: An integral equation method in conformal mapping. Num. Math.9, 250–258 (1966). · Zbl 0156.16901 · doi:10.1007/BF02162088
[14] —- Numerical mapping of exterior domains. Num. Math.10, 437–445 (1967) · Zbl 0155.21502 · doi:10.1007/BF02162876
[15] Ugodčikov, A. G.: Electromodelling of the conformal mapping of a circular cylinder onto a given doubly connected region. Ukrain. Mat. Ž.7, 305–312 (1955)
[16] Wilson, H. B.: A method of conformal mapping and the determination of stresses in solid propellant rocket grains. Report No. S-38, Rohm and Haas Co., Alabama, 1963
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.