Theorems on products of \(EP_{r}\) matrices. (English) Zbl 0179.05104

Full Text: DOI


[1] Cline, R., Note on the generalized inverse of the product of matrices, SIAM rev., 6, 57-58, (1966) · Zbl 0121.26105
[2] Erdelyi, I., On the “reverse order law” related to the generalized inverse of matrix products, J. ACM, 13, 439-443, (1966) · Zbl 0166.03103
[3] Erdelyi, I., On partial isometries in finite-dimensional Euclidean spaces, J. SIAM appl. math., 14, 453-467, (1966) · Zbl 0285.15005
[4] Erdelyi, I., On normal partial isometries in finite-dimensional Euclidean spaces, Kansas state univ. dept. statistics tech. rept., 6, (1967)
[5] Greville, T.N.E., Note on the generalized inverse of a matrix product, U.S. army, math. res. center tech. sum. rept., 623, (1966) · Zbl 0143.26303
[6] Hamburger, H.L.; Grimshaw, M.E., Linear transformations in n-dimensional vector space, (1956), Cambridge Univ. Press London and New York · Zbl 0043.32504
[7] Katz, I.J., Weigmann type theorems for epr matrices, Duke math. J., 32, 423-428, (1965) · Zbl 0168.03102
[8] Katz, I.J., Abstract, Notices amer. math. soc., 66T-69, (January, 1966)
[9] Katz, I.J.; Pearl, M.H., On epr and normal epr matrices, J. res. nat. bur. standards, 70B, 47-77, (1966) · Zbl 0138.01401
[10] Pearl, M.H., On normal and epr matrices, Michigan math. J., 6, 1-5, (1959) · Zbl 0084.01702
[11] Penrose, R., A generalized inverse for matrices, Proc. Cambridge phil. soc., 51, 406-413, (1955) · Zbl 0065.24603
[12] Penrose, R., On best approximate solutions of linear matrix equations, Proc. Cambridge phil. soc., 52, 17-19, (1956) · Zbl 0070.12501
[13] Schwerdtfeger, H., Introduction to linear algebra and the theory of matrices, (1962), P. Noordhoff Groningen · Zbl 0103.25005
[14] Shilov, G., Introduction to the theory of linear spaces, (1961), Prentice-Hall Englewood Cliffs, New Jersey
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.