×

zbMATH — the first resource for mathematics

On the buckling of flexible plates. (English. Russian original) Zbl 0181.52604
PMM, J. Appl. Math. Mech. 32, 747-754 (1968); translation from Prikl. Mat. Mekh. 32, 721-727 (1968).

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Polubarinova-Kochina, P.Ia., On the problem of stability of plates, Pmm, Vol.3, N≗1, (1936)
[2] Vorovich, I.I., On some direct methods in the nonlinear theory of shallow shells, Pmm, Vol. 20, N≗4, (1956) · Zbl 0072.19802
[3] Friedrichs, K.; Stoker, J., The non-linear boundary value problem of the buckled plate, Amer.J.math., Vol.63, N≗4, (1941) · JFM 67.0826.01
[4] Berger, M.; Fife, P., On von Kármán’s equations and the buckling of a thin elastic plate, Bull.amer.math.soc., Vol.72, N≗6, (1966) · Zbl 0146.22103
[5] Krasnosel’skii, M.A., Topological methods in the theory of nonlinear integral equations, (1956), Gostekhizdat Moscow, (English translation published by Pergamon Press). · Zbl 0070.33001
[6] Vorovich, I.I., Some problems of stability of shells in the large, Dokl.akad.nauk SSSR, Vol.122, N≗1, (1958) · Zbl 0107.41506
[7] Vorovich, I.I., Postbuckling behavior of a circular plate, Uch.zap.rostov. univ., Vol.32, N≗4, (1955)
[8] Trenogin, V.A., The equation of bifurcation and Newton’s polygon, Dokl.akad. nauk SSSR, Vol.131, N≗5, (1960) · Zbl 0114.31805
[9] Vorovich, I.I., On the existence of solutions in the nonlinear theory of shells, Dokl.akad.nauk SSSR, Vol.117, N≗2, (1957) · Zbl 0091.39702
[10] Morozov, N.F., On the nonlinear theory of thin plates, Dokl.akad.nauk SSSR, Vol.114, N≗5, (1957) · Zbl 0083.39904
[11] Liusternik, L.A.; Sobolev, V.I., Elements of functional analysis, (1966), Fizmatgiz Moscow
[12] Vainberg, M.M.; Trenogin, V.A., The methods of Liapunov and Schmidt in the theory of nonlinear equations and their subsequent development, Usp.matem.nauk, Vol.17, N≗2, (1962) · Zbl 0117.31904
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.