×

zbMATH — the first resource for mathematics

Decay and asymptotics for \(\square u = F(u)\). (English) Zbl 0182.13602

PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bateman, H, ()
[2] Brodsky, A.R, The existence of wave operators for non-linear equations, Pacific J. math., 19, 1-12, (1966) · Zbl 0151.20901
[3] Browder, F.E; Strauss, W.A, Scattering for non-linear wave equations, Pacific J. math., 13, 23-43, (1963) · Zbl 0115.08302
[4] Dunford, N; Schwartz, J, ()
[5] Gagliardo, E, Propriétà di algune classi di funzioni in più variàbili, Ricerche mat., 7, 102-137, (1958) · Zbl 0089.09401
[6] Jörgens, K, Das anfangswertproblem im grossen für eine klasse nichtlinearer wellengleichungen, Math. Z., 77, 295-307, (1961) · Zbl 0111.09105
[7] Lax, P.D; Phillips, R.S, Scattering theory, (1967), Academic Press New York · Zbl 0214.12002
[8] Morawetz, C.S, The limiting amplitude principle, Commun. pure appl. math., 15, 349-362, (1962) · Zbl 0196.41202
[9] Nelson, S, Asymptotic behavior of certain fundamental solutions to the Klein-Gordon equation, (1966), M.I.T., Cambridge, Massachusetts, Unpublished Doctoral dissertation
[10] Segal, I.E, Non-linear semigroups, Ann. math., 78, 339-364, (1963) · Zbl 0204.16004
[11] Segal, I.E, Quantization and dispersion for non-linear relativistic equations, (), 79-108
[12] Segal, I.E, Non-linear relativistic partial differential equations, () · Zbl 0204.41701
[13] \scSegal, I. E., Dispersion for non-linear relativistic equations II, (to be published).
[14] Strauss, W.A, Scattering for hyperbolic equations, Trans. am. math. soc., 108, 13-37, (1963) · Zbl 0138.34903
[15] Strauss, W.A, La décroissance asymptotique des solutions des équations d’onde non linéaires, Compt. rend. acad. sci. Paris, 256, 2749-2750, (1963) · Zbl 0115.08401
[16] Strauss, W.A, LES opérateurs d’onde pour des équations d’onde non linéaires, Compt. rend. acad. sci. Paris, 256, 5045-5046, (1963) · Zbl 0196.40001
[17] Strauss, W.A, On continuity of functions with values in various Banach spaces, Pacific J. math., 19, 543-551, (1966) · Zbl 0185.20103
[18] Zachmanoglou, E.C, The decay of solutions, Arch. ratl. mech. anal., 14, 312-325, (1963) · Zbl 0168.08002
[19] Morawetz, C.S, Energy identities for the wave equation, () · Zbl 0212.44102
[20] \scMorawetz, C. S., Time decay for the non-linear Klein-Gordon equation. Proc. Royal Soc. (London) (to be published).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.